[Leetcode Week16]Range Sum Query - Mutable
Range Sum Query - Mutable 题解
原创文章,拒绝转载
题目来源:https://leetcode.com/problems/range-sum-query-mutable/description/
Description
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.
The update(i, val) function modifies nums by updating the element at index i to val.
Example
Given nums = [1, 3, 5]
sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
Solution
class NumArray {
private:
vector<int> segTree;
int size;
void pushUp(int root) {
segTree[root] = segTree[root * 2 + 1] + segTree[root * 2 + 2];
}
void build(int root, int left, int right, vector<int>& nums) {
if (left == right) {
segTree[root] = nums[left];
return;
}
int mid = (left + right) / 2;
build(root * 2 + 1, left, mid, nums);
build(root * 2 + 2, mid + 1, right, nums);
pushUp(root);
}
void updateValInInterval(int root, int left, int right, int index, int val) {
if (left == right) {
if (index == left) {
segTree[root] = val;
}
return;
}
int mid = (left + right) / 2;
if (index <= mid) {
updateValInInterval(root * 2 + 1, left, mid, index, val);
} else {
updateValInInterval(root * 2 + 2, mid + 1, right, index, val);
}
pushUp(root);
}
int queryInInterval(int root, int left, int right, int targetLeft, int targetRight) {
if (left == targetLeft && right == targetRight) {
return segTree[root];
}
int mid = (left + right) / 2;
if (targetRight <= mid)
return queryInInterval(root * 2 + 1, left, mid, targetLeft, targetRight);
else if (targetLeft >= mid + 1)
return queryInInterval(root * 2 + 2, mid + 1, right, targetLeft, targetRight);
else
return queryInInterval(root * 2 + 1, left, mid, targetLeft, mid) +
queryInInterval(root * 2 + 2, mid + 1, right, mid + 1, targetRight);
}
public:
NumArray(vector<int> nums) {
size = nums.size();
if (size > 0) {
segTree = vector<int>(size * 3);
build(0, 0, size - 1, nums);
// test
printVec(segTree);
}
}
void update(int i, int val) {
if (size == 0)
return;
updateValInInterval(0, 0, size - 1, i, val);
}
int sumRange(int i, int j) {
if (size == 0)
return 0;
return queryInInterval(0, 0, size - 1, i, j);
}
};
解题描述
这道题是典型的线段树问题,考察了线段树的构建、单节点值更新还有查询三个方面。上面给出来的解法是使用线性数据结构vector来实现线段树的做法。得出这种做法的过程中遇到的问题是,线段树数组长度的定义问题。如果说输入的数组长度为size,则线段树的节点数目确实为 2 * size - 1
,但是实际在vector中使用下标访问子节点的时候,如果vector长度定义过短,就会出现越界的问题,这也是在提交中发现Runtime Error。后面使用内存检查工具自己运行了下测试代码就跟踪到错误发生的位置:在线段树插入新的节点的时候出现了越界。问题正是在于,下标的最大值并不是确定的,而且很有可能是大于2 * size - 1
。而如果把vector开得比较大,正如上述解答中的是原数组的三倍,确实可以AC,但是却浪费了中间许多空间(实际测试中,vector中间会有一些位置没用到)。
于是想了一下,试着使用链接方式构建线段树,代码如下:
class NumArray {
private:
struct SegmentTreeNode {
SegmentTreeNode* left;
SegmentTreeNode* right;
int val;
SegmentTreeNode(int x) {
val = x;
left = NULL;
right = NULL;
}
};
int size;
SegmentTreeNode *segTreeRoot;
void pushUp(SegmentTreeNode* node) {
node -> val = node -> left -> val + node -> right -> val;
}
SegmentTreeNode* build(int left, int right, vector<int>& nums) {
if (left == right) {
return new SegmentTreeNode(nums[left]);
}
SegmentTreeNode* node = new SegmentTreeNode(0);
int mid = (left + right) / 2;
node -> left = build(left, mid, nums);
node -> right = build(mid + 1, right, nums);
pushUp(node);
return node;
}
void updateValInInterval(SegmentTreeNode* node, int left, int right, int index, int val) {
if (left == right) {
if (index == left) {
node -> val = val;
}
return;
}
int mid = (left + right) / 2;
if (index <= mid) {
updateValInInterval(node -> left, left, mid, index, val);
} else {
updateValInInterval(node -> right, mid + 1, right, index, val);
}
pushUp(node);
}
int queryInInterval(SegmentTreeNode* node, int left, int right, int targetLeft, int targetRight) {
if (left == targetLeft && right == targetRight) {
return node -> val;
}
int mid = (left + right) / 2;
if (targetRight <= mid)
return queryInInterval(node -> left, left, mid, targetLeft, targetRight);
else if (targetLeft >= mid + 1)
return queryInInterval(node -> right, mid + 1, right, targetLeft, targetRight);
else
return queryInInterval(node -> left, left, mid, targetLeft, mid) +
queryInInterval(node -> right, mid + 1, right, mid + 1, targetRight);
}
void clearTree(SegmentTreeNode* node) {
if (node != NULL) {
clearTree(node -> left);
clearTree(node -> right);
delete(node);
}
}
public:
NumArray(vector<int> nums) {
size = nums.size();
segTreeRoot = NULL;
if (size > 0) {
segTreeRoot = build(0, size - 1, nums);
}
}
void update(int i, int val) {
if (size == 0)
return;
updateValInInterval(segTreeRoot, 0, size - 1, i, val);
}
int sumRange(int i, int j) {
if (size == 0)
return 0;
return queryInInterval(segTreeRoot, 0, size - 1, i, j);
}
~NumArray() {
clearTree(segTreeRoot);
}
};
这样确实是可以节省空间,也省去了对vector长度的考虑,基本的逻辑也是相同的,但是实际提交之后,链接构建的线段树比线性结构的线段树跑出来的时间要长一些。确实,vector的底层是用数组实现,下标访问的速度肯定是要比链接构建的树要快。所以这里就需要权衡时间和空间的成本了。
[Leetcode Week16]Range Sum Query - Mutable的更多相关文章
- [LeetCode] 307. Range Sum Query - Mutable 区域和检索 - 可变
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- leetcode@ [307] Range Sum Query - Mutable / 线段树模板
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- [LeetCode] 307. Range Sum Query - Mutable 解题思路
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- LeetCode - 307. Range Sum Query - Mutable
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- Leetcode 2——Range Sum Query - Mutable(树状数组实现)
Problem: Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), ...
- leetcode 307. Range Sum Query - Mutable(树状数组)
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- LeetCode 308. Range Sum Query 2D - Mutable
原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...
- 【刷题-LeetCode】307. Range Sum Query - Mutable
Range Sum Query - Mutable Given an integer array nums, find the sum of the elements between indices ...
- [LeetCode] 303. Range Sum Query - Immutable 区域和检索 - 不可变
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
随机推荐
- Redis哨兵的详解
1 哨兵的作用 哨兵是redis集群架构中非常重要的一个组件,主要功能如下: 集群监控:负责监控redis master和slave进程是否正常工作 消息通知:如果某个redis实例有故障,那么哨兵负 ...
- 在select中,载入时默认select为空白,选项内不显示空白项
有两种办法,一种纯css实现,一种借助js实现. html: <body onload="load()"> <select id="abc" ...
- Redis 基础:Redis 简介及安装
Remote Dictionary Server(Redis)是一个由Salvatore Sanfilippo写的key-value存储系统.Redis是一个开源的使用ANSI C语言编写.遵守BSD ...
- 前台界面(1)---HTML基本定义及常见标签
已经很久没有更新博客了,从今天开始要继续走在学习的路上,话不多说,先来干货: 目录 1. HTML定义 2. H标签 3. Img标签 4. P标签 5. A标签 6. 无序列表 7. 有序列表 8. ...
- Ubuntu 10.04 下载android 4.1.1_r4
一.安装 curl git $ sudo apt-get install curl $ sudo apt-get install git-core 二.安装repo 1.在主目录(~)建立目录 bi ...
- Html CSS学习(五)position定位 原
Html CSS学习(五)position定位 position用来对元素进行定位,其值有以下几种: static:无特殊定位,对象遵循正常文档流,top,right,bottom,left等属性不会 ...
- BZOJ1027 [HNOI2004]打鼹鼠 【dp】
1207: [HNOI2004]打鼹鼠 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3647 Solved: 1746 [Submit][Sta ...
- Mac将应用拖入Finder工具栏
在Finder的工具栏上放一下应用,方便打开对应的文件,可以 Command + 鼠标拖动应用,将应用拖入Finder工具栏中. 本人的Finder工具栏上添加了vscode这个应用
- bzoj1211: [HNOI2004]树的计数(purfer编码)
BZOJ1005的弱化版,不想写高精度就可以写这题嘿嘿嘿 purfer编码如何生成?每次将字典序最小的叶子节点删去并将其相连的点加入序列中,直到树上剩下两个节点,所以一棵有n个节点的树purfer编码 ...
- 实例——简单的Samba共享
服务端配置 # 临时停止iptables service iptables stop # 临时禁用SELinux setenforce 0 # 禁止iptables开机自动启动 chkconfig i ...