Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.
 
题目大意:给一棵树,问删掉哪个结点后,剩下的树的最大结点数最小。
思路:DFS一次即可求出所有点的子树大小size,顺便算出每个点最大的子树maxSize。那么对于每个点删掉之后,剩下的树的最大结点数就是max(maxSize, n - size),前面就是它的所有子树的最大size,后面就是删掉这个点后,它父亲所在的树的大小。
在研究树的分治之前先来补一条水题。。。这也算DP- -?
 
代码(47MS):
 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std; const int MAXN = ;
const int MAXE = ;
const int INF = 0x7fff7fff; int head[MAXN], size[MAXN], maxSize[MAXN], f[MAXN];
int to[MAXE], next[MAXE];
int n, ecnt; void init() {
memset(head, -, sizeof(head));
ecnt = ;
} void add_edge(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;
} void dfs(int u) {
maxSize[u] = ;
size[u] = ;
for(int p = head[u]; ~p; p = next[p]) {
int &v = to[p];
if(v == f[u]) continue;
f[v] = u;
dfs(v);
size[u] += size[v];
maxSize[u] = max(maxSize[u], size[v]);
}
} int main() {
int T;
scanf("%d", &T);
while(T--) {
init();
scanf("%d", &n);
int u, v;
for(int i = ; i < n; ++i) {
scanf("%d%d", &u, &v);
add_edge(u, v);
}
dfs();
int pos, maxd = INF;
for(int i = ; i <= n; ++i) {
if(max(maxSize[i], n - size[i]) < maxd) {
pos = i;
maxd = max(maxSize[i], n - size[i]);
}
}
printf("%d %d\n", pos, maxd);
}
}

POJ 1655 Balancing Act(求树的重心)的更多相关文章

  1. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  2. POJ 1655 Balancing Act(求树的重心--树形DP)

    题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...

  3. POJ 1655 Balancing Act (求树的重心)【树形DP】(经典)

    <题目链接> 题目大意:给你一棵树,任意去除某一个点后,树被分成了几个联通块,则该点的平衡值为所有分成的连通块中,点数最大的那个,问你:该树所有点中,平衡值最小的那个点是什么? 解题分析: ...

  4. POJ 1655 Balancing Act (树的重心,常规)

    题意:求树的重心,若有多个重心,则输出编号较小者,及其子树中节点最多的数量. 思路: 树的重心:指的是一个点v,在删除点v后,其子树的节点数分别为:u1,u2....,设max(u)为其中的最大值,点 ...

  5. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  6. POJ 1655 Balancing Act【树的重心模板题】

    传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...

  7. POJ 1655 - Balancing Act - [DFS][树的重心]

    链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...

  8. POJ 1655 Balancing Act ( 树的重心板子题,链式前向星建图)

    题意: 给你一个由n个节点n-1条边构成的一棵树,你需要输出树的重心是那个节点,以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的 题解: 树的重心定义:找到一个点,其所 ...

  9. POJ 1655 Balancing Act 焦点树

    标题效果:鉴于一棵树.除去一个点之后,这棵树将成为一些中国联通的块.之后该点通过寻求取消最低形成块的最大数目. 思维:树DP思维.通过为每个子树尺寸的根节点深搜索确定.之后该节点然后除去,,还有剩下的 ...

  10. POJ 1655 Balancing Act (树状dp入门)

    Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any nod ...

随机推荐

  1. Spring注解配置(1)——@Autowired

    @Autowired 注释,它可以对类成员变量.方法及构造函数进行标注,完成自动装配的工作. 通过 @Autowired的使用来消除 set ,get方法.在使用@Autowired之前,我们对一个b ...

  2. Redis Sentinel 集群安装 step by step

    一. 准备材料 服务器 IP address 操作系统 位数 Redis 版本   CNT06CAH05 192.168.3.47 CentOS 6.5 x64 Redis-3.2.6 sentine ...

  3. Django学习笔记2

    1.BookInfo.objects.all() objects:是Manager类型的对象,用于与数据库进行交互 当定义模型类时没有指定管理器,则Django会为模型类提供一个名为objects的管 ...

  4. ThinkPHP5.0框架事务处理操作简单示例

    本文介绍ThinkPHP5.0框架事务处理操作,结合实例形式分析了ThinkPHP5针对删除操作的事务处理相关操作技巧,可以加深对ThinkPHP源码的理解,需要的朋友可以参考下 事务的调用在mysq ...

  5. 第6章 AOP与全局异常处理6.1-6.4 慕课网微信小程序开发学习笔记

    第6章 AOP与全局异常处理 https://coding.imooc.com/learn/list/97.html 目录: 第6章 AOP与全局异常处理6-1 正确理解异常处理流程 13:236-2 ...

  6. 分布式时间同步ntp安装

    直接执行:sudo yum install ntp或者sudo -y install ntp

  7. STM32(10)——窗口看门狗

    简介: 窗口看门狗(WWDG)通常被用来监测由外部干扰或不可预见的逻辑条件造成的应用程序背离正常的运行序列而产生的软件故障.除非递减计数器的值在 T6 位 (WWDG->CR 的第六位)变成 0 ...

  8. C语言基础——链表的相关操作

    1 #include <stdio.h> #include <malloc.h> #include <string.h> #include <math.h&g ...

  9. vue核心概念

    # 1. vuex是什么 github站点: https://github.com/vuejs/vuex 在线文档: https://vuex.vuejs.org/zh-cn/ 简单来说: 对应用中组 ...

  10. HTML基础part1

    HTML基础 Web的本质就是利用浏览器访问socket服务端,socket服务端收到请求回复数据提供给浏览器进行渲染显示. import socket def main(): sock = sock ...