[BZOJ2440]完全平方数解题报告|莫比乌斯函数的应用
完全平方数
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
还记得第一次接触这道题是一年前吧..那时候参加了一场某OJ的比赛
然后并不会做..在discuss里面发现是“BZOJ2440原题”
然后看到了一个叫做莫比乌斯函数的东西...很努力地看但是仍然没看懂...
也奇怪..现在就能看懂了呢...
莫比乌斯函数:
μ(1)=1;
对于每个质因子的次数都为1的数n,假设其能拆分出k个质因子,μ(n)=(-1)^k
其他情况下μ(n)=0
构造方法:
首先容易证明莫比乌斯函数是积性函数
然后用线筛
procedure build;
var m:int64;
i,j:longint;
begin
fillchar(vis,sizeof(vis),true);
prime[]:=;
m:=trunc(sqrt(INF));mu[]:=;
for i:= to m do
begin
if vis[i] then
begin
inc(prime[]);
prime[prime[]]:=i;
mu[i]:=-;
end;
for j:= to prime[] do
begin
if i*prime[j]>m then break;
vis[i*prime[j]]:=false;
if i mod prime[j]= then
begin
mu[prime[j]*i]:=;
break;
end;
mu[prime[j]*i]:=-mu[i];
end;
end;
end;
对于这道题,很容易想到二分答案+容斥
然后发现由偶数个次数为一的质数乘起来的完全平方因子,对答案的贡献是正的,奇数个是负的
这个就可以用莫比乌斯函数来替代
program bzoj2440;
const INF = ;maxn = ;
var test,L,R,ans,k,mid:int64;
tt:longint;
prime,mu:array[-..maxn]of int64;
vis:array[-..maxn]of boolean; procedure build;
var m:int64;
i,j:longint;
begin
fillchar(vis,sizeof(vis),true);
prime[]:=;
m:=trunc(sqrt(INF));mu[]:=;
for i:= to m do
begin
if vis[i] then
begin
inc(prime[]);
prime[prime[]]:=i;
mu[i]:=-;
end;
for j:= to prime[] do
begin
if i*prime[j]>m then break;
vis[i*prime[j]]:=false;
if i mod prime[j]= then
begin
mu[prime[j]*i]:=;
break;
end;
mu[prime[j]*i]:=-mu[i];
end;
end;
end; function solve(x:int64):int64;
var sum:int64;
i:longint;
begin
sum:=;
for i:= to trunc(sqrt(x)) do
inc(sum,(x div (int64(i)*i))*mu[i]); exit(sum);
end; begin
assign(input,'bzoj2440.in');reset(input);
readln(test);
build;
for tt:= to test do
begin
readln(k);
L:=;R:=INF;ans:=-;
while L<=R do
begin
mid:=(L+R) >> ;
if solve(mid)>=k then
begin
ans:=mid;R:=mid-;
end else L:=mid+;
end;
writeln(ans);
end;
end.
[BZOJ2440]完全平方数解题报告|莫比乌斯函数的应用的更多相关文章
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- 完全平方数 HYSBZ - 2440 (莫比乌斯函数容斥)
完全平方数 HYSBZ - 2440 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他 ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数
emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...
- [计蒜客] tsy's number 解题报告 (莫比乌斯反演+数论分块)
interlinkage: https://nanti.jisuanke.com/t/38226 description: solution: 显然$\frac{\phi(j^2)}{\phi(j)} ...
- [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...
- BZOJ2440(容斥+莫比乌斯函数)
题目本质: 首先有如下结论: 而通过写一写可以发现: 举例来讲,36及其倍数的数,会被1的倍数加一遍,被4的倍数扣一遍,会被9的倍数扣一遍,而为了最终计数为0,需要再加回来一遍,所以在容斥里面是正号. ...
- 【BZOJ2440】完全平方数 [莫比乌斯函数]
完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 小X自幼就很喜欢数. 但奇怪的是 ...
随机推荐
- LintCode-378.将二叉查找树转换成双链表
将二叉查找树转换成双链表 将一个二叉查找树按照中序遍历转换成双向链表. 样例 给定一个二叉查找树: 返回 1<->2<->3<->4<->5. 标签 链 ...
- 201621044079 韩烨 week11-作业11-多线程
作业11-多线程 参考资料 多线程参考文件 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序 ...
- Android 布局方式学习
一.LinearLayout线性布局: 线性布局是程序中最常见的一种布局方式,线性布局可以分为水平线性布局和垂直线性布局两种, 通过android:orientation属性可以设置线性布局的方向 1 ...
- c++内存分类
1. 代码段:放置代码 2. 静态数据段:放置全局变量和static的局部变量,字符串常量 3. 动态数据段:栈,放置局部作用域的变量,离开函数返回后就会被释放:堆,必须手动的分配和释放. 关于字符串 ...
- shmem:
在/proc/meminfo中发现,cached不等于ActiveFile + InActiveFile,我们来看看cache到底都包括啥内存 1)首先肯定包含activeFile 和 inactiv ...
- Delphi SQL语句字符串拼接
单引号必须成对出现,最外层的单引号表示其内部符号为字符:除最外层以外的单引号,每两个单引号代表一个'字符.加号:+用于字符串之间的连接.字符串常量用四个单引号,例如 ' select * from T ...
- Version
题目 有三个操作: \(change \ u \ v \ a \ b\) : \(u\)到\(v\)路径上的点点权加上\(a+k*b\),\(k\)为第几个点,\(u\)为第0个点. \(query ...
- (一)Redis简介及安装
Redis简介 Redis 是一个开源(BSD许可)的,内存中的key-value数据结构存储系统,它可以用作数据库.缓存和消息中间件. Redis具有丰富的数据结构类型.包括字符串(string), ...
- Oracle 获取 某个表的建表SQL
获取A表的创表SQL select dbms_metadata.get_ddl('TABLE','A') from dual
- BZOJ2654 & 洛谷2619:tree——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2654 https://www.luogu.org/problemnew/show/P2619 给你 ...