【Foreign】K优解 [堆]
K优解
Time Limit: 20 Sec Memory Limit: 512 MB
Description
Input
Output
一行一个数表示答案。
Sample Input
11 21
9 25
17 19
Sample Output
HINT
Solution
先对于每个 i,将每行的 a[i][1]~a[i][m] 从小到大排序,再将行按照其元素差值为多关键字排序(共m-1个关键字)。
那么我们知道,最小的方案肯定是所有行都取第一个。由于其有一些特殊,我们先抛开这个方案。
我们知道,次小的方案是(2,1,1,1…),把这个状态加入堆,由较优方案扩展较劣方案,对于每一个状态,我们记录其扩展到第几行,以及取第几个元素。
在已经得到前 k 优的方案时,当前所有方案中还未扩展的最好的方案x(其最后扩展位置为 i),就是第 k+1 优。
从方案x,我们可以扩展出几个较劣解:
1、x 的第 i 个元素不取m:将 i 行取的元素增加1(扩展位置为 i)
2、i + 1 <= n:将 i+1 行取为2(扩展位置为 i+1)
3、x 的第 i 个元素取为2 且 i + 1 <= n:将 i 行取为1,i+1 行取为2(扩展位置为 i+1)
由此,每个解都可由唯一的优于它的解扩展得来。
用个堆维护一下,每次取出最小的即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9 + ; int n, m, k;
vector <int> A[ONE];
int id[ONE];
s64 Ans; struct power
{
s64 val;
int pt, id;
bool operator <(power a) const
{
return a.val < val;
}
};
priority_queue <power> q; int cmp(int a, int b)
{
for(int i = ; i < m; i++)
{
if(A[a][i + ] - A[a][i] < A[b][i + ] - A[b][i]) return ;
if(A[a][i + ] - A[a][i] > A[b][i + ] - A[b][i]) return ;
}
return ;
} int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int main()
{
n = get(); m = get(); k = get();
for(int i = ; i <= n; i++)
{
A[i].push_back();
for(int j = ; j <= m; j++)
A[i].push_back(get());
sort(A[i].begin(), A[i].end());
id[i] = i;
} sort(id + , id + n + , cmp); s64 res = ;
for(int i = ; i <= n; i++) res += A[i][];
Ans = res; q.push((power){res - A[id[]][] + A[id[]][], , }); for(int i = ; i <= k; i++)
{
power u = q.top(); q.pop();
Ans ^= u.val; if(u.id + <= m)
q.push((power){u.val - A[id[u.pt]][u.id] + A[id[u.pt]][u.id + ], u.pt, u.id + });
if(u.pt + <= n && <= m)
q.push((power){u.val - A[id[u.pt + ]][] + A[id[u.pt + ]][], u.pt + , });
if(u.pt + <= n && u.id == )
q.push((power){u.val - A[id[u.pt]][] + A[id[u.pt]][] - A[id[u.pt + ]][] + A[id[u.pt + ]][], u.pt + , });
} printf("%lld", Ans);
}
【Foreign】K优解 [堆]的更多相关文章
- hdu 2639 Bone Collector II (01背包,求第k优解)
这题和典型的01背包求最优解不同,是要求第k优解,所以,最直观的想法就是在01背包的基础上再增加一维表示第k大时的价值.具体思路见下面的参考链接,说的很详细 参考连接:http://laiba2004 ...
- HDU 2639 (01背包第k优解)
/* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...
- 01背包之求第K优解——Bone Collector II
http://acm.hdu.edu.cn/showproblem.php?pid=2639 题目大意是,往背包里赛骨头,求第K优解,在普通01背包的基础上,增加一维空间,那么F[i,v,k]可以理解 ...
- hdu2639(背包求第k优解)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2639 题意:给出一行价值,一行体积,让你在v体积的范围内找出第k大的值 分析:dp[i][j][k]表 ...
- 关于01背包求第k优解
引用:http://szy961124.blog.163.com/blog/static/132346674201092775320970/ 求次优解.第K优解 对于求次优解.第K优解类的问题,如果相 ...
- (01背包 第k优解) Bone Collector II(hdu 2639)
http://acm.hdu.edu.cn/showproblem.php?pid=2639 Problem Description The title of this problem i ...
- 背包的第k优解[动态规划]
From easthong ☆背包的第k优解 描述 Description DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包.这些包的容量是 ...
- dp之01背包hdu2639(第k优解)
http://acm.hdu.edu.cn/showproblem.php?pid=2639 题意:给出一行价值,一行体积,让你在v体积的范围内找出第k大的值.......(注意,不要 和它的第一题混 ...
- Bone Collector II---hdu2639(01背包求第k优解)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2639求01背包的第k大解.合并两个有序序列 选取物品i,或不选.最终的结果,是我们能在O(1)的时间内 ...
随机推荐
- block知识总结
一.block在内存中存在的形式 1.当把block句法写在函数或者方法外面时,系统会在静态数据区分配一块内存区域给block对象.这片区域在程序执行期会一直存在. 2.当block句法写在函数或者方 ...
- 记一次dll强命名冲突事件
一 问题的出现 现在要做一个net分布式平台,平台涉及多个服务之间调用问题,最基础的莫过于sso.由于我们的sso采用了wcf一套私有框架实现,另外一个webapi服务通过接口调用sso服务.由于s ...
- document,element,dom对象api详解
Document对象: 根元素的访问,也就是HTML标签的访问.使用document.documentElement访问根对象. 使用Document对象查找对象 getElementById():通 ...
- Codeforces Gym 101142 C. CodeCoder vs TopForces(思维+图论)
题意: 每个人有两个积分CC和TF 第i个人能战胜第j个人的条件满足下面两个条件中的一个即可 1.CCi > CCj 或 TFi > TFj 2.i能战胜k,k能战胜j. 题解: 先按CC ...
- (转)如何用U盘创建Linux系统盘
(转)http://teliute.org/linux/TeUbt/lesson60/lesson60.html 创建一个U盘linux安装盘,用以启动系统并安装: 1.启动盘创建器 1)点击主按钮, ...
- 【题解】CF#983 E-NN country
首先,我们从 u -> v 有一个明显的贪心,即能向上跳的时候尽量向深度最浅的节点跳.这个我们可以用树上倍增来维护.我们可以认为 u 贪心向上跳后不超过 lca 能跳到 u' 的位置, v 跳到 ...
- Ubuntu安装teamviewer注意事项。
Ubuntu安装teamviewer注意事项. 首先通过浏览器到官方下载ubuntu对应teamviewer的安装包 但是通过dpkg –i安装之后发现安装过程出问题,安装好的包打开之后也闪退. 这个 ...
- CF578C:Weakness and Poorness——题解
https://vjudge.net/problem/CodeForces-578C —————————————————————————— 题目大意:序列的数-x,求最大连续子序列和的绝对值的最小值. ...
- HDOJ.1789 Doing Homework again (贪心)
Doing Homework again 点我挑战题目 题意分析 给出n组数据,每组数据中有每份作业的deadline和score,如果不能按期完成,则要扣相应score,求每组数据最少扣除的scor ...
- libudev使用说明书
转http://blog.csdn.net/coroutines/article/details/38067805 1. 初始化 首先调用udev_new,创建一个udev library conte ...