n(n<=40000)个村民排成一列,每个人不能排在自己父亲的前面,有些人的父亲不一定在。问有多少种方案。

父子关系组成一个森林,加一个虚拟根rt,转化成一棵树。

假设f[i]表示以i为根的子树的排列方案数。

f[i]=f[1]*f[2]*..f[k] /(sum[i]-1)!/sum[1]!*sum[2]!*..sum[k]!)

化简,对每一个i,sum[i]-1在分子出现一次,sum[i]在分母出现一次。

Ans = n!/(sum1*sum2*sum3*...*sumn)

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; typedef long long LL;
const int mod=((int)1e9)+,maxn=,N=;
int first[N],sum[N],fa[N];
LL jc[N],inv[N];
int rt,al;
struct node{int x,y,next;}a[N]; void ins(int x,int y)
{
a[++al].x=x;a[al].y=y;
a[al].next=first[x];first[x]=al;
} void dfs(int x)
{
sum[x]++;
for(int i=first[x];i;i=a[i].next)
{
dfs(a[i].y);
sum[x]+=sum[a[i].y];
}
} int main()
{
freopen("a.in","r",stdin); jc[]=;
for(int i=;i<=maxn;i++) jc[i]=(jc[i-]*i)%mod;
inv[]=;
for(int i=;i<=maxn;i++)
{
inv[i]=((LL)(mod-mod/i))*inv[mod%i]%mod;
} int T,n,m,x,y;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
rt=n+;
for(int i=;i<=n;i++) fa[i]=-;
al=;
memset(first,,sizeof(first));
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
fa[x]=y;
ins(y,x);
}
for(int i=;i<=n;i++)
if(fa[i]==-) fa[i]=rt,ins(rt,i);
memset(sum,,sizeof(sum));
dfs(rt);
LL ans=jc[sum[rt]-];
for(int i=;i<=n;i++)
{
ans=ans*inv[sum[i]]%mod;
}
printf("%lld\n",ans);
} return ;
}

#include<cstdio>#include<cstdlib>#include<cstring>#include<iostream>using namespace std;
typedef long long LL;const int mod=((int)1e9)+7,maxn=40000,N=40010;int first[N],sum[N],fa[N];LL jc[N],inv[N];int rt,al;struct node{int x,y,next;}a[N];
void ins(int x,int y){a[++al].x=x;a[al].y=y;a[al].next=first[x];first[x]=al;}
void dfs(int x){sum[x]++;for(int i=first[x];i;i=a[i].next){dfs(a[i].y);sum[x]+=sum[a[i].y];}}
int main(){freopen("a.in","r",stdin);jc[1]=1;for(int i=2;i<=maxn;i++) jc[i]=(jc[i-1]*i)%mod;inv[1]=1;for(int i=2;i<=maxn;i++){inv[i]=((LL)(mod-mod/i))*inv[mod%i]%mod;}int T,n,m,x,y;scanf("%d",&T);while(T--){scanf("%d%d",&n,&m);rt=n+1;for(int i=1;i<=n;i++) fa[i]=-1;al=0;memset(first,0,sizeof(first));for(int i=1;i<=m;i++){scanf("%d%d",&x,&y);fa[x]=y;ins(y,x);}for(int i=1;i<=n;i++)if(fa[i]==-1) fa[i]=rt,ins(rt,i);memset(sum,0,sizeof(sum));dfs(rt);LL ans=jc[sum[rt]-1];for(int i=1;i<=n;i++){ans=ans*inv[sum[i]]%mod;}printf("%lld\n",ans);}return 0;}

[uva11174]村民排队 递推+组合数+线性求逆元的更多相关文章

  1. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  2. 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)

    题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...

  3. 线性齐次递推式快速求第n项 学习笔记

    定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\l ...

  4. 51nod 1126 求递推序列的第N项 思路:递推模拟,求循环节。详细注释

    题目: 看起来比较难,范围10^9 O(n)都过不了,但是仅仅是看起来.(虽然我WA了7次 TLE了3次,被自己蠢哭) 我们观察到 0 <= f[i] <= 6 就简单了,就像小学初中学的 ...

  5. 一种递推组合数前缀和的Trick

    记录一下一种推组合数前缀和的方法 Trick 设\(\sum_{i = 0}^m C_n^i = S(n, m)\) \(S\)是可以递推的 \(S(n, m + 1) = S(n, m) + C_{ ...

  6. bzoj3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——递推 / 组合数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 对于这种有点巧妙的递推还是总是没有思路... 设计一个状态 f[i] 表示第 i 位置 ...

  7. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  8. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  9. 【数学/扩展欧几里得/线性求逆元】[Sdoi2008]沙拉公主的困惑

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...

随机推荐

  1. Mininet实验 MAC地址学习

    实验目的 了解交换机的MAC地址学习过程. 了解交换机对已知单播.未知单播和广播帧的转发方式. 实验原理 MAC(media access control,介质访问控制)地址是识别LAN节点的标识.M ...

  2. Where to go from here

    Did you get through all of that content? Congratulations! You've learnt the fundamentals of algorith ...

  3. java---StringBuilder类的用法(转载)

    转载自http://blog.csdn.net/zi_jun/article/details/7624999 String对象是不可改变的.每次使用 System.String类中的方法之一时,都要在 ...

  4. k邻近算法理解及代码实现

    github:代码实现 本文算法均使用python3实现 1 KNN   KNN(k-nearest neighbor, k近邻法),故名思议,是根据最近的 $ k $ 个邻居来判断未知点属于哪个类别 ...

  5. Zabbix监控配置

    Zabbix在线文档 https://www.zabbix.com/documentation/4.0/zh/manual/config/hosts 1.我们启动服务后,我们看到了端口都正在监听,但是 ...

  6. SFTPHelper

    public class SFTPHelper { #region 字段或属性 private readonly SftpClient _sftp; /// <summary> /// S ...

  7. Python爬虫requests判断请求超时并重新发送请求

     下面是简单的一个重复请求过程,更高级更简单的请移步本博客: https://www.cnblogs.com/fanjp666888/p/9796943.html  在爬虫的执行当中,总会遇到请求连接 ...

  8. ARC072E Alice in linear land

    ---题面--- 题解: 首先我们要观察到一个性质,因为在固定的起始距离下,经过固定的操作,最后所在的位置是固定的,我们设经过操作1 ~ i之后所在的地方距离终点为d[i]. 那么如果女巫可以修改第i ...

  9. BZOJ4514:[SDOI2016]数字配对——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4514 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj ...

  10. BZOJ1293:[SCOI2009]生日礼物——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1293 https://www.luogu.org/problemnew/show/P2564#sub ...