给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法。这两个算法其实都是贪心思想的使用,但又能求出最优解。(代码借鉴http://blog.csdn.net/u014488381)

一.Kruskal算法

Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺序选取每条边,假如一条边的两个端点不在同一个集合中,就将这两个端点合并到同一个集合中;假如两个端点在同一个集合中,说明这两个端点已经连通了,就将当前这条边舍弃掉;当所有顶点都在同一个集合时,说明最小生成树已经形成。(写代码的时候会将所有边遍历一遍)

来看一个例子:

步骤:

(1)先根据权值把边排序:

AD 5

CE 5

DF 6

AB 7

BE 7

BC 8

EF 8

BD 9

EG 9

FG 11

(2)

选择AD这条边,将A、D加到同一个集合1中

选择CE这条边,将C、E加到同一个集合2中(不同于AD的集合)

选择DF这条边,由于D已经在集合1中,因此将F加入到集合1中,集合变为A、D、F

选择AB这条边,同理,集合1变为A、B、D、F

选择BE这条边,由于B在集合1中,E在集合2中,因此将两个集合合并,形成一个新的集合ABCDEF

由于E、F已经在同一集合中,舍弃掉BC这条边;同理舍弃掉EF、BD

选择EG这条边,此时所有元素都已经在同一集合中,最小生成树形成

象征性地舍弃掉FG这条边

实现代码如下:

#include <iostream>
#include <cstring>
#define MaxSize 20
using namespace std; struct Edge{
int begin;
int end;
int weight;
};
struct Graph{
char ver[MaxSize + ];
int edg[MaxSize][MaxSize];
}; void CreateGraph(Graph *g) {
int VertexNum;
char Ver;
int i = ;
cout << "输入图的顶点:" << endl;
while ((Ver = getchar()) != '\n') {
g->ver[i] = Ver;
i++;
}
g->ver[i] = '\0';
VertexNum = strlen(g->ver);
cout << "输入相应的邻接矩阵" << endl;
for (int i = ; i < VertexNum; i++) {
for (int j = ; j < VertexNum; j++) {
cin >> g->edg[i][j]; //输入0则为没有边相连啊
}
}
} void PrintGraph(Graph g) {
int VertexNum = strlen(g.ver);
cout << "图的顶点为:" << endl;
for (int i = ; i < VertexNum; i++) {
cout << g.ver[i] << " ";
}
cout << endl;
cout << "图的邻接矩阵为:" << endl;
for (int i = ; i < VertexNum; i++) {
for (int j = ; j < VertexNum; j++) {
cout << g.edg[i][j] << " ";
}
cout << endl;
}
} int getVerNum(Graph g) {
return strlen(g.ver);
} int getEdgeNum(Graph g) {
int res = ;
int VertexNum = getVerNum(g);
for (int i = ; i < VertexNum; i++) {
//邻接矩阵对称,计算上三角元素和即可
for (int j = i + /*假设没有自己指向自己的*/; j < VertexNum; j++) {
if (g.edg[i][j] != ) res++;
}
}
return res;
} Edge *CreateEdges(Graph g) {
int k = ;
int EdgeNum = getEdgeNum(g);
int VertexNum = getVerNum(g);
Edge * p = new Edge[EdgeNum];
for (int i = ; i < VertexNum; i++) {
for (int j = i; j < VertexNum; j++) {
if (g.edg[i][j] != ) {
p[k].begin = i;
p[k].end = j;
p[k].weight = g.edg[i][j];
k++;
}
}
}
for (int i = ; i < EdgeNum - ; i++) {
Edge minWeightEdge = p[i];
for (int j = i + ; j < EdgeNum; j++) {
if (minWeightEdge.weight > p[j].weight) {
Edge temp = minWeightEdge;
minWeightEdge = p[j];
p[j] = temp;
}
}
p[i] = minWeightEdge;
}
return p;
} void Kruskal(Graph g) {
int VertexNum = getVerNum(g);
int EdgeNum = getEdgeNum(g);
Edge *p = CreateEdges(g);
int *index = new int[VertexNum]; //index数组,其元素为连通分量的编号,index[i]==index[j]表示编号为i和j的顶点在同一连通分量中
int *MSTEdge = new int[VertexNum - ]; //用来存储已确定的最小生成树的**边的编号**,共VertexNum-1条边
int k = ;
int WeightSum = ;
int IndexBegin, IndexEnd;
for (int i = ; i < VertexNum; i++) {
index[i] = -; //初始化所有index为-1
}
for (int i = ; i < VertexNum - ; i++) {
for (int j = ; j < EdgeNum; j++) {
if ( !(index[p[j].begin] >= && index[p[j].end] >= && index[p[j].begin] == index[p[j].end] /*若成立表明p[j].begin和p[j].end已在同一连通块中(且可相互到达,废话)*/) ) {
MSTEdge[i] = j;
if (index[p[j].begin] == - && index[p[j].end] == -) {
index[p[j].begin] = index[p[j].end] = i;
}
else if (index[p[j].begin] == - && index[p[j].end] >= ) {
index[p[j].begin] = i;
IndexEnd = index[p[j].end];
for (int n = ; n < VertexNum; n++) {
if (index[n] == IndexEnd) {
index[n] == i;
}
}
}
else if (index[p[j].begin] >= && index[p[j].end] == -) {
index[p[j].end] = i;
IndexBegin = index[p[j].begin];
/*将连通分量合并(或者说将没加入连通分量的顶点加进去,然后将原来连通分量的值改了)*/
for (int n = ; n < VertexNum; n++) {
if (index[n] == IndexBegin) {
index[n] == i;
}
}
}
else {
IndexBegin = index[p[j].begin];
IndexEnd = index[p[j].end];
for (int n = ; n < VertexNum; n++) {
if (index[n] == IndexBegin || index[n] == IndexEnd) {
index[n] = i;
}
}
}
break;
}
}
}
cout << "MST的边为:" << endl;
for (int i = ; i < VertexNum - ; i++) {
cout << g.ver[p[MSTEdge[i]].begin] << "--" << g.ver[p[MSTEdge[i]].end] << endl;
WeightSum += p[MSTEdge[i]].weight;
}
cout << "MST的权值为:" << WeightSum << endl;
}

二.Prim算法(代码还没理解)

Prim算法的基本思想:设置两个存放顶点的集合,第一个集合初始化为空,第二个集合初始化为一个包含所有顶点的集合。首先把图中的任意一个顶点a放进第一个集合,然后在第二个集合中找到一个顶点b,使b到第一个集合中的任意一点的权值最小,然后把b从第二个集合移到第一个集合。接着在第二个集合中找到顶点c,使c到a或b的权值比到第二个集合中的其他任何顶点到a或b的权值都要小,然后把c从第二个集合移到第一个集合中。以此类推,当第二个集合中的顶点全部移到第一个集合时,最小生成树产生。

以上面的图再次作为例子:

设第一个集合为V,第二个集合为U。

V={A}, U={B, C, D, E, F, G}

(1)A连接了两个顶点,B和D,AB权值为7,AD权值为5,选择权值小的一条边和相应的顶点D,将D加入集合V中。V={A, D}, U={B, C, E, F, G}

(2)观察包含V中的元素A和D的边,AB权值为7,BD权值为9,DE权值为15,DF权值为6,将F加入V中。V={A, D, F}, U={B, C, E, G}

(3)依次将B(AB)、E(BE)、C(CE)、G(EG)加入到集合V中。

(4)最小生成树的边包括:AD DF AB BE CE EG,problem solved

实现代码如下:

#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
#define MaxSize 20
struct Graph{
char ver[MaxSize + ];
int edg[MaxSize][MaxSize];
}; void CreateGraph(Graph *g) {
int VertexNum;
char Ver;
int i = ;
cout << "输入图的顶点:" << endl;
while ((Ver = getchar()) != '\n') {
g->ver[i] = Ver;
i++;
}
g->ver[i] = '\0';
VertexNum = strlen(g->ver);
cout << "输入相应的邻接矩阵" << endl;
for (int i = ; i < VertexNum; i++) {
for (int j = ; j < VertexNum; j++) {
cin >> g->edg[i][j]; //输入0则为没有边相连啊
}
}
} void PrintGraph(Graph g) {
int VertexNum = strlen(g.ver);
cout << "图的顶点为:" << endl;
for (int i = ; i < VertexNum; i++) {
cout << g.ver[i] << " ";
}
cout << endl;
cout << "图的邻接矩阵为:" << endl;
for (int i = ; i < VertexNum; i++) {
for (int j = ; j < VertexNum; j++) {
cout << g.edg[i][j] << " ";
}
cout << endl;
}
} int getVerNum(Graph g) {
return strlen(g.ver);
} //将不邻接的顶点之间的权值设为
void SetWeight(Graph *g) {
for (int i = ; i < getVerNum(*g); i++) {
for (int j = ; j < getVerNum(*g); j++) {
if (g->edg[i][j] == ) {
g->edg[i][j] = INT_MAX;
}
}
}
} void Prim(Graph g, int *parent) {
//V为所有顶点的集合,U为最小生成树的节点集合
int lowcost[MaxSize]; //lowcost[k]保存着编号为k的顶点到U中所有顶点的最小权值
int closest[MaxSize]; //closest[k]保存着U到V-U中编号为k的顶点权值最小的顶点的编号
int used[MaxSize];
int min;
int VertexNum = getVerNum(g);
for (int i = ; i < VertexNum; i++) {
lowcost[i] = g.edg[][i];
closest[i] = ;
used[i] = ;
parent[i] = -;
}
used[] = ;
for (int i = ; i < VertexNum - ; i++) {
int j = ;
min = INT_MAX;
for (int k = ; k < VertexNum; k++) { //找到V-U中的与U中顶点组成的最小权值的边的顶点编号
if (used[k] == && lowcost[k] < min) {
min = lowcost[k];
j = k;
}
}
parent[j] = closest[j];
used[j] = ;
for (int k = ; k < VertexNum; k++) { //由于j顶点加入U中,更新lowcost和closest数组中的元素,检测V-U中的顶点到j顶点的权值是否比j加入U之前的lowcost数组的元素小
if (used[k] == && g.edg[j][k] < lowcost[k]) {
lowcost[k] = g.edg[j][k];
closest[k] = j;
}
}
}
} void PrintMST(Graph g, int *parent) {
int VertexNum = getVerNum(g);
int weight = ;
cout << "MST的边为:" << endl;
for (int i = ; i < VertexNum; i++) {
cout << g.ver[parent[i]] << "--" << g.ver[i] << endl;
weight += g.edg[parent[i]][i];
}
cout << "MST的权值为" << weight << endl;
} int main() {
Graph g;
int parent[];
CreateGraph(&g);
PrintGraph(g);
SetWeight(&g);
Prim(g, parent);
PrintMST(g, parent);
return ;
}

三.Kruskal算法和Prim算法的适用情况

Kruskal算法适用于边稀疏的情况(要进行排序),Prim算法适用于边稠密的情况。

求最小生成树——Kruskal算法和Prim算法的更多相关文章

  1. 贪心算法-最小生成树Kruskal算法和Prim算法

    Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...

  2. 最小生成树之Kruskal算法和Prim算法

    依据图的深度优先遍历和广度优先遍历,能够用最少的边连接全部的顶点,并且不会形成回路. 这样的连接全部顶点并且路径唯一的树型结构称为生成树或扩展树.实际中.希望产生的生成树的全部边的权值和最小,称之为最 ...

  3. Algorithm --> Kruskal算法和Prim算法

    最小生成树之Kruskal算法和Prim算法 Kruskal多用于稀疏图,prim多用于稠密图. 根据图的深度优先遍历和广度优先遍历,可以用最少的边连接所有的顶点,而且不会形成回路.这种连接所有顶点并 ...

  4. 最小生成数kruskal算法和prim算法

    定义 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图. 连通网:在 ...

  5. 最小生成树的两种方法(Kruskal算法和Prim算法)

    关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连 ...

  6. 最小生成树(次小生成树)(最小生成树不唯一) 模板:Kruskal算法和 Prim算法

    Kruskal模板:按照边权排序,开始从最小边生成树 #include<algorithm> #include<stdio.h> #include<string.h> ...

  7. 求最小生成树——Kruskal算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...

  8. Prim算法和Dijkstra算法的异同

    Prim算法和Dijkstra算法的异同 之前一直觉得Prim和Dijkstra很相似,但是没有仔细对比: 今天看了下,主要有以下几点: 1: Prim是计算最小生成树的算法,比如为N个村庄修路,怎么 ...

  9. 使用Apriori算法和FP-growth算法进行关联分析

    系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...

随机推荐

  1. EM算法--原理

    EM算法即期望最大化(Expection Maximization)算法,是一种最优化算法,在机器学习领域用来求解含有隐变量的模型的最大似然问题.最大似然是一种求解模型参数的方法,顾名思义,在给定一组 ...

  2. logback配置每天生成一个日志文件,保存30天的日志文件

    <?xml version="1.0" encoding="UTF-8"?> <configuration> <!-- 文件输出格 ...

  3. 53、Gif 控件GifView 的使用,播放gif图片

    GifView 是一个为了解决android中现在没有直接显示gif的view,只能通过mediaplay来显示这个问题的项目,其用法和 ImageView一样,支持gif图片.可监视GIF是否加载成 ...

  4. 【BZOJ4571】[Scoi2016]美味 主席树

    [BZOJ4571][Scoi2016]美味 Description 一家餐厅有 n 道菜,编号 1...n ,大家对第 i 道菜的评价值为 ai(1≤i≤n).有 m 位顾客,第 i 位顾客的期望值 ...

  5. iOS 遍历控件

    NSArray *subviews = [_bgImageView subviews]; for (id objInput in subviews) { if ([objInput isKindOfC ...

  6. python split(),os.path.split()和os.path.splitext()函数用法

    https://blog.csdn.net/T1243_3/article/details/80170006   # -*- coding:utf-8 -*- """ @ ...

  7. python类的相关知识第二部分

    类的继承.多态.封装 一.类的继承 1.应用场景: 类大部分功能相同,大类包含小类的情况 例如: 动物类 共性:都要吃喝拉撒.都有头有脚 特性: 猫类.走了很轻,叫声特别,喜欢白天睡觉 狗类.的叫声很 ...

  8. win7下docker配置加速器

    1.docker-machine ssh default(有时可省略) 2.sudo sed -i "s|EXTRA_ARGS='|EXTRA_ARGS='--registry-mirror ...

  9. 《深入理解Linux内核》阅读笔记 --- Chapter 3 Processes

    Process Switching 1.The set of data that must be loaded into the registers before the process resume ...

  10. threading模块、ThreadLocal

    一.threading模块 1.线程对象的创建 1.1 Thread类直接创建 import threading import time def countNum(n): # 定义某个线程要运行的函数 ...