POJ3666 Making the Grade [DP,离散化]
Making the Grade
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 9090 | Accepted: 4253 |
Description
A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).
You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is
|A1 - B1| + |A2 - B2| + ... + |AN - BN |
Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.
Input
* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single integer elevation: Ai
Output
* Line 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.
Sample Input
7
1
3
2
4
5
3
9
Sample Output
3
分析:显然是用DP来做。当然蒟蒻DP本来就蒻,讲的可能不太清楚。
根据题意,构造的只能是广义单调数列,那么就考虑单调递增的情况。
如果要让结果尽可能小,那么肯定要求构造的序列中最大的数maxx最小,同时满足每个位置上构造的数x最小。那么设状态转移方程为dp[i][j],表示当前到了第i个位置,序列中最大的数为j,状态转移方程为dp[i][j]=abs(j-w[i])+min(d[i-1][k]) (k<=j)。当然数据的范围太大,需要离散化。但是三重循环复杂度为O(nm^2),那么每次枚举k时直接在j的循环中设置一个minn=min(min,dp[i-1][j]),把方程改为dp[i][j]=min{abs(j-w[i])+minn},可以将复杂度降低到O(nm),离散化以后就是O(n^2)。讲的肯定听不懂,那就看代码吧。
Code:
//It is made by HolseLee on 21st May 2018
//POJ 3666
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
#define Fi(i,a,b) for(int i=a;i<=b;i++)
#define Abs(a) ((a)>0?(a):-(a))
using namespace std;
typedef long long ll;
const int N=;
int n,m,a[N],b[N];
ll dp[N][N];
void work()
{
Fi(i,,n){ll mn=dp[i-][];
Fi(j,,n){mn=min(mn,dp[i-][j]);
dp[i][j]=Abs(a[i]-b[j])+mn;}}
ll ans=dp[n][];
Fi(i,,n)ans=min(ans,dp[n][i]);
printf("%lld\n",ans);
}
int main()
{
ios::sync_with_stdio(false);
cin>>n;Fi(i,,n){cin>>a[i];b[i]=a[i];}
sort(b+,b+n+);work();return ;
}
POJ3666 Making the Grade [DP,离散化]的更多相关文章
- POJ3666Making the Grade[DP 离散化 LIS相关]
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6445 Accepted: 2994 ...
- POJ - 3666 Making the Grade(dp+离散化)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)
传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...
- POJ3666 Making the Grade
POJ3666 Making the Grade 题意: 给定一个长度为n的序列A,构造一个长度为n的序列B,满足b非严格单调,并且最小化S=∑i=1N |Ai-Bi|,求出这个最小值S,1<= ...
- 【题解】Making The Grade(DP+结论)
[题解]Making The Grade(DP+结论) VJ:Making the Grade HNOI-D2-T3 原题,禁赛三年. 或许是我做过的最简单的DP题了吧(一遍过是什么东西) 之前做过关 ...
- CF13C Sequence(DP+离散化)
题目描述 给定一个序列,每次操作可以把某个数+1-1.要求把序列变成非降数列.求最少的修改次数. 输入输出样例 输入 #1 - 输出 #1 4 输入 #2 输出 #2 1 解题思路 这题是一道非常好题 ...
- poj3666 Making the Grade(基础dp + 离散化)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- poj3666/CF714E/hdu5256/BZOJ1367(???) Making the Grade[线性DP+离散化]
给个$n<=2000$长度数列,可以把每个数改为另一个数代价是两数之差的绝对值.求把它改为单调不增or不减序列最小代价. 话说这题其实是一个结论题..找到结论应该就很好做了呢. 手玩的时候就有感 ...
- poj3666 Making the grade【线性dp】
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions:10187 Accepted: 4724 ...
随机推荐
- Linux系统关闭防火墙端口
1. 打开防火墙端口 # iptables -I INPUT -p tcp --dport -j ACCEPT # iptables -I INPUT -p tcp --dport -j ACCEPT ...
- [Luogu 2805] NOI2009 植物大战僵尸
这题是个比较经典的最大权闭合子图,可以建图转化为最小割问题,再根据最大流最小割定理,采用任意一种最大流算法求得. 对于每个点,如果点权w为正,则从源点到这个点连一条边权为w的有向边:否则如果w为负则从 ...
- Enterprise Architect13 : 去掉UML图页面右侧那一道竖线
我们在使用Enterprise Architect 中,画用例图,时序图时,页面右侧有一条竖线,见下图: 如果页面元素太多,会超出竖线的范围,显得很不协调. 如果像去掉竖线,只需选择主菜单的Layou ...
- 几分钟内学习 Clojure
1.基本例子 ; 分号作为注释的开始 ; Clojure 用一种把元素用括号括起来的像列表一样的方式来书写,元素之间用空格隔开 ; clojure 解释器会把第一个元素当做是函数或者宏调用,其他的都作 ...
- java在不同系统有不同的换行符
//从当前系统中获取换行符,默认是"\n" String lineSeparator = System.getProperty("line.separator" ...
- 【Atcoder】ARC084 Small Multiple
[题意]求一个k的倍数使其数位和最小,输出数位和,k<=10^5. [算法]最短路 [题解]考虑极端情况数字是可能爆long long的(例如k*num=100...000),所以确定基本方向是 ...
- nginx与php-fpm通讯方式
nginx和php-fpm的通信方式有两种,一种是tcp socket的方式,一种是unix socke方式. tcp sockettcp socket的优点是可以跨服务器,当nginx和php-fp ...
- 转一篇sublime必备的一些插件
Package Control 功能:安装包管理 简介:sublime插件控制台,提供添加.删除.禁用.查找插件等功能 使用:https://sublime.wbond.net/installatio ...
- Android中自定义属性attr.xml的格式详解
1. reference:参考某一资源ID. (1)属性定义: <declare-styleable name = "名称"> ...
- python实战===爬取所有微信好友的信息
''' 爬取所有T信好友的信息 ''' import itchat from pandas import DataFrame itchat.login() friends=itchat.get_fri ...