弱省互测#2 t2
题意
给两个树,大小分别为n和m,现在两棵树各选一些点(包括1),使得这棵树以1号点为根同构(同构就是每个点的孩子数目相同),求最大的同构树。(n, m<=500)
分析
我们从两棵树中各取出一个点,考虑以这两个点为根能得到的最大同构数。
题解
容易得到:
设\(d(i, j)\)表示第一棵树选\(i\)号点,第二棵树选\(j\)号点所能得到的最大同构数。
那么\(d(i, j)\)就是等于从\(i\)这个点的子树选一些点,从\(j\)这个点的子树选一些点,选出的点数目相同,一一匹配,则答案就是这些点的\(\sum d(x, y)\)。
计算这个我们用最大费用流来计算。
同时我们从深度深的向深度浅的进行计算。
#include <bits/stdc++.h>
using namespace std;
const int N=505, M=N*2;
int ed[2][N][N], ecnt[2][N], n[2], ihead[M], cnt=1;
struct E {
int next, from, to, cap, w;
}e[M*M];
void add(int x, int y, int cap, int w) {
e[++cnt]=(E){ihead[x], x, y, cap, w}; ihead[x]=cnt;
e[++cnt]=(E){ihead[y], y, x, 0, -w}; ihead[y]=cnt;
}
int d[M], p[M];
bool spfa(int s, int t, int n) {
static bool vis[M];
static int q[M], fr, ta;
fr=ta=0;
q[ta++]=s;
memset(d, 0x7f, sizeof(int)*(n+1));
d[s]=0;
while(ta!=fr) {
int x=q[fr++];
vis[x]=0;
fr=fr==M?0:fr;
for(int i=ihead[x]; i; i=e[i].next) {
if(!e[i].cap) {
continue;
}
int y=e[i].to;
if(d[y]>d[x]+e[i].w) {
d[y]=d[x]+e[i].w;
p[y]=i;
if(!vis[y]) {
vis[y]=1;
if(d[y]<d[q[fr]]) {
fr=fr==0?M:fr;
q[--fr]=y;
}
else {
q[ta++]=y;
ta=ta==M?0:ta;
}
}
}
}
}
return d[t]!=0x7f7f7f7f;
}
void tadd(int x, int y, int w) {
ed[w][x][ecnt[w][x]++]=y;
ed[w][y][ecnt[w][y]++]=x;
}
int st[2][N][N], scnt[2][N], mxdep;
void dfs(int w, int x, int f, int dep) {
st[w][dep][scnt[w][dep]++]=x;
mxdep=max(dep, mxdep);
int sz=0;
for(int i=0; i<ecnt[w][x]; ++i) {
int y=ed[w][x][i];
if(y==f) {
continue;
}
dfs(w, y, x, dep+1);
ed[w][x][sz++]=y;
}
ecnt[w][x]=sz;
}
int f[N][N];
void work(int x, int y) {
int c1=ecnt[0][x], c2=ecnt[1][y];
int s=c1+c2+1, t=s+1;
memset(ihead, 0, sizeof(int)*(t+1));
cnt=1;
for(int i=1; i<=c1; ++i) {
add(s, i, 1, 0);
}
for(int i=1; i<=c2; ++i) {
add(c1+i, t, 1, 0);
}
for(int i=0; i<c1; ++i) {
for(int j=0; j<c2; ++j) {
int y1=ed[0][x][i], y2=ed[1][y][j];
add(i+1, c1+j+1, 1, -f[y1][y2]);
}
}
int &now=f[x][y];
now=1;
while(spfa(s, t, t)) {
int f=0x7f7f7f7f;
for(int x=t; x!=s; x=e[p[x]].from) f=min(f, e[p[x]].cap);
for(int x=t; x!=s; x=e[p[x]].from) e[p[x]].cap-=f, e[p[x]^1].cap+=f;
now+=-f*d[t];
}
}
void dfs(int dep) {
if(dep<0) {
return;
}
int c1=scnt[0][dep], c2=scnt[1][dep];
for(int i=0; i<c1; ++i) {
for(int j=0; j<c2; ++j) {
work(st[0][dep][i], st[1][dep][j]);
}
}
dfs(dep-1);
}
int main() {
scanf("%d", &n[0]);
for(int i=1; i<n[0]; ++i) {
int x, y;
scanf("%d%d", &x, &y);
tadd(x, y, 0);
}
scanf("%d", &n[1]);
for(int i=1; i<n[1]; ++i) {
int x, y;
scanf("%d%d", &x, &y);
tadd(x, y, 1);
}
dfs(0, 1, 0, 0);
dfs(1, 1, 0, 0);
dfs(mxdep);
printf("%d\n", f[1][1]);
return 0;
}
弱省互测#2 t2的更多相关文章
- 弱省互测#0 t2
题意 给定两个字符串 A 和 B,求下面四个问题的答案: 1.在 A 的子串中,不是 B 的子串的字符串的数量. 2.在 A 的子串中,不是 B 的子序列的字符串的数量. 3.在 A 的子序列中,不是 ...
- 【CH 弱省互测 Round #1 】OVOO(可持久化可并堆)
Description 给定一颗 \(n\) 个点的树,带边权. 你可以选出一个包含 \(1\) 顶点的连通块,连通块的权值为连接块内这些点的边权和. 求一种选法,使得这个选法的权值是所有选法中第 \ ...
- 弱省互测#2 t3
题意 给出\(n\)个01字节和\(m\)个01字节,要求用后者去匹配前者,两个串能匹配当且仅当除了每个字节末位不同,其他位都要相同.问匹配后者至少有多少个末位不同.(\(1 \le m \le n ...
- 弱省互测#1 t3
题意 给出一棵n个点的树,求包含1号点的第k小的连通块权值和.(\(n<=10^5\)) 分析 k小一般考虑堆... 题解 堆中关键字为\(s(x)+min(a)\),其中\(s(x)\)表示\ ...
- 弱省互测#0 t3
Case 1 题意 要求给出下面代码的答案然后构造输入. 给一个图, n 个点 m 条边 q 次询问,输出所有点对之间最大权值最小的路径. 题解 把每一个询问的输出看成一条边,建一棵最小生成树. Ca ...
- 弱省互测#0 t1
题意 给一个\(N \times M\)的01网格,1不能走,从起点\((1, 1)\)走到\((N, M)\),每次只能向下或向右走一格,问两条不相交的路径的方案数.(n, m<=1000) ...
- 【2018集训队互测】【XSY3372】取石子
题目来源:2018集训队互测 Round17 T2 题意: 题解: 显然我是不可能想出来的……但是觉得这题题解太神了就来搬(chao)一下……Orzpyz! 显然不会无解…… 为了方便计算石子个数,在 ...
- 【loj2461】【2018集训队互测Day 1】完美的队列
#2461. 「2018 集训队互测 Day 1」完美的队列 传送门: https://loj.ac/problem/2461 题解: 直接做可能一次操作加入队列同时会弹出很多数字,无法维护:一个操作 ...
- 洛谷 P4463 - [集训队互测 2012] calc(多项式)
题面传送门 & 加强版题面传送门 竟然能独立做出 jxd 互测的题(及其加强版),震撼震撼(((故写题解以祭之 首先由于 \(a_1,a_2,\cdots,a_n\) 互不相同,故可以考虑求出 ...
随机推荐
- DIV+CSS布局中主要CSS属性介绍
Float: Float属性是DIV+CSS布局中最基本也是最常用的属性,用于实现多列功能,我们知道<div>标签默认一行只能显示一个,而使用Float属性可以实现一行显示多个div的功能 ...
- Socket网络编程一
1.Socket参数介绍 A network socket is an endpoint of a connection across a computer network. Today, most ...
- linux文件对比命令——diff
diff用于比较文件或目录内容,特别是比较两个版本不同的文件以找到改动的地方. 如果指定比较的是文件,则只有当输入为文本文件时才有效,以逐行的方式,比较文本文件的异同处. 如果指定比较的是目录的的时候 ...
- 饿了么基于Vue2.0的通用组件开发之路(分享会记录)
Element:一套通用组件库的开发之路 Element 是由饿了么UED设计.饿了么大前端开发的一套基于 Vue 2.0 的桌面端组件库.今天我们要分享的就是开发 Element 的一些心得. 官网 ...
- 什么时候用Model,什么时候用Entity?
在建立一个实体类的时候,究竟是用Model还是用Entity?比如MVC中,Model存了数据实体,但是他被称为Model,而在EF中,Entity也是存放数据实体,却被称作Entity,这两者有何区 ...
- Android源码阅读 – Zygote
@Dlive 本文档: 使用的Android源码版本为:Android-4.4.3_r1 kitkat (源码下载: http://source.android.com/source/index.ht ...
- 第一章 简单工厂模式 及 UML中类图的表示方法
写一个简单计算器程序时,可以写一个操作类,然后加.减.乘.除操作分别继承它,复写操作计算结果的方法.写一个简单工厂类,通过输入的操作符,使用操作类来new一个相应的操作类的子类对象.这样,工厂就实例化 ...
- 转:POI操作Excel导出
package com.rd.lh.util.excel; import java.beans.PropertyDescriptor; import java.io.FileOutputStream; ...
- 12. UITextField
1. UITextField 的认识 UItextField通常用于外部数据输入,以实现人机交互.比如我们QQ.微信的登录界面中让你输入账号和密码的地方 2. UITextField 控件的属性设置 ...
- 【转】Windows下使用libsvm中的grid.py和easy.py进行参数调优
libsvm中有进行参数调优的工具grid.py和easy.py可以使用,这些工具可以帮助我们选择更好的参数,减少自己参数选优带来的烦扰. 所需工具:libsvm.gnuplot 本机环境:Windo ...