按位DP f[i]表示第i位为1的最长子序列

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
int n,x,ans,mx;
int f[];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int main()
{
read(n);
for(int i=;i<=n;i++)
{
read(x);mx=;
for(int j=;j<=;j++)
if(x&(<<j))mx=max(mx,f[j]+);
for(int j=;j<=;j++)
if(x&(<<j))f[j]=max(f[j],mx);
ans=max(ans,mx);
}
printf("%d\n",ans);
return ;
}

bzoj4300: 绝世好题(DP)的更多相关文章

  1. BZOJ4300:绝世好题(DP)

    Description 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len). Input 输入文件共2行. 第一行包括一个整数 ...

  2. bzoj4300绝世好题

    bzoj4300绝世好题 题意: 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0.n≤100000,ai≤10^9. 题解: 用f[i]表示当前二进制i为1 ...

  3. bzoj 4300: 绝世好题 dp

    4300: 绝世好题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php ...

  4. [bzoj4300]绝世好题_二进制拆分

    绝世好题 bzoj-4300 题目大意:题目链接. 注释:略. 想法: 二进制拆分然后用一个数组单独存一下当前答案即可. Code: #include <iostream> #includ ...

  5. bzoj千题计划190:bzoj4300: 绝世好题

    http://www.lydsy.com/JudgeOnline/problem.php?id=4300 f[i] 表示第i位&为1的最长长度 #include<cstdio> # ...

  6. 2018.09.27 bzoj4300: 绝世好题(二进制dp)

    传送门 简单dp. 根据题目的描述. 如果数列bn{b_n}bn​合法. 那么有:bi−1b_{i-1}bi−1​&bi!=0b_i!=0bi​!=0,因此我们用f[i]f[i]f[i]表示数 ...

  7. 【bzoj4300】绝世好题 dp

    题目描述 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len). 输入 输入文件共2行. 第一行包括一个整数n. 第二行包括n个 ...

  8. BZOJ4300 绝世好题 【dp】

    题目 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len). 输入格式 输入文件共2行. 第一行包括一个整数n. 第二行包括n个 ...

  9. bzoj4300 绝世好题 【dp】By cellur925

    题目描述: 给定一个长度为\(n\)的数列\(a\),求\(a\)的子序列\(b\)的最长长度,满足bi&bi-1!=0(\(2<=i<=len\)). 90分做法: 并没有部分分 ...

随机推荐

  1. hdu2199Can you solve this equation?(解方程+二分)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  2. Qt-QML-Slider-滑块-Style-后继

    首先了,先把我上篇文章的demo准备好,不过我上次写的被我删除了,这次就重新写了一个,上代码 import QtQuick 2.5 import QtQuick.Controls 1.4 import ...

  3. docker官网安装

    最近发现一些同学居然不会安装docker,难,不难,只是“网络不好”! 如果是学习的话,目前我发现的比较好的方法还是到清华的开源镜像网站: https://mirror.tuna.tsinghua.e ...

  4. Linux命令应用大词典-第43章iptables和arptables防火墙

    43.1 iptables-save:保存iptables规则 43.2 iptables-restore:恢复iptables规则 43.3 iptables:IPv4数据包过滤和NAT管理工具 4 ...

  5. truffle运行特殊 无法找到module的处理方法

    https://blog.csdn.net/SnWJy/article/details/80549227 错误描述: ​ truffle项目根目录执行truffle compile时,报错'modul ...

  6. JQuery常用函数方法全集

    Attribute: $("p").addClass(css中定义的样式类型); 给某个元素添加样式 $("img").attr({src:"test ...

  7. 自测之Lesson11:消息和消息队列

    题目:key及ftok函数的作用. 解答: key是用来创建消息队列的一个参数,当两个key相同时,创建消息队列会引起“误会”(除非有意为之).所以我们可以通过ftok函数来获得一个“不易重复”的ke ...

  8. c# dll问题

    问题描述: dll完全拷贝另一个程序,可是报缺少引用程序集之类的错误. 解决办法: 有可能是.net版本造成的错误.一般常见在3.5升到4之后,存在很多容差.

  9. Web后台任务处理

    文章:.NET Core开源组件:后台任务利器之Hangfire Hangfire官网介绍:在.NET和.NET Core应用程序中执行后台处理的简便方法.无需Windows服务或单独的过程. 以持久 ...

  10. Java中I/O流之数据流

    Java 中的数据流: 对于某问题:将一个 long 类型的数据写到文件中,有办法吗?    转字符串 → 通过 getbytes() 写进去,费劲,而且在此过程中 long 类型的数需要不断地转换. ...