Sklearn (一) 监督学习
本系列博文是根据SKlearn的一个学习小结,并非原创!
1.直接学习TensorFlow有点不知所措,感觉需要一些基础知识做铺垫。
2.之前机器学习都是理论《Ng机器学习基础》+底层编写《机器学习实战》,现实生活基本用不到。
3.会增加一些个人总结,也会删除一些以前学过的知识。
|
广义线性模型 |
1.1 普通最小二乘法

然而,对于普通最小二乘的系数估计问题,其依赖于模型各项的相互独立性。当各项是相关的,且设计矩阵
的各列近似线性相关,那么,设计矩阵会趋向于奇异矩阵,这会导致最小二乘估计对于随机误差非常敏感,产生很大的方差。例如,在没有实验设计的情况下收集到的数据,这种多重共线性(multicollinearity)的情况可能真的会出现。
Example:
SK的数据集介绍:https://blog.csdn.net/sa14023053/article/details/52086695,暂时用不到那么多,用到什么看什么吧!
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
'''
这是一个糖尿病的数据集,
主要包括442行数据,10个属性值
分别是:Age(年龄)、
性别(Sex)、
Body mass index(体质指数)、
Average Blood Pressure(平均血压)、
S1~S6一年后疾病级数指标。
Target为一年后患疾病的定量指标。
'''
diabetes = datasets.load_diabetes()
# 取其中的一个数据进行试验
# https://blog.csdn.net/lanchunhui/article/details/49725065,
# np.newaxis的含义和分析,其中也可以写作下面的形式:
# diabetes.data[:,2][:,np.newaxis] 或者 diabetes.data[:,2][:,None]
# 目的为了增加一个轴
diabetes_X = diabetes.data[:, np.newaxis, 2] #(442,10)
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
# Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)
# The coefficients,打印权重
print('Coefficients: \n', regr.coef_)
# The mean squared error,损失函数
print("Mean squared error: %.2f"
% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))
# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
#plt.xticks()/plt.yticks()设置轴记号
#现在是明白干嘛用的了,就是人为设置坐标轴的刻度显示的值
'''
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.yticks([-1, 0, +1],
[r'$-1$', r'$0$', r'$+1$'])
'''
#plt.xticks(())
#plt.yticks(())
plt.show()

1.2 岭回归

注释:就是加了一个惩罚项,防止过拟合~~
Exanple和简单线性回归一样的表达~~
>>> from sklearn import linear_model
>>> reg = linear_model.Ridge (alpha = .5)
>>> reg.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=None, solver='auto', tol=0.001)
>>> reg.coef_
array([ 0.34545455, 0.34545455])
>>> reg.intercept_
0.13636...
1.3 贝叶斯岭回归

训练数据:
>>> from sklearn import linear_model
>>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
>>> Y = [0., 1., 2., 3.]
>>> reg = linear_model.BayesianRidge()
>>> reg.fit(X, Y)
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, tol=0.001, verbose=False)
预测数据:
>>> reg.predict ([[1, 0.]]) array([ 0.50000013])
查看权重:
>>> reg.coef_ array([ 0.49999993, 0.49999993])
参考:
http://sklearn.apachecn.org/cn/0.19.0/modules/linear_model.html
https://blog.csdn.net/eastmount/article/details/52929765
http://cwiki.apachecn.org/pages/viewpage.action?pageId=10814293
http://sklearn.apachecn.org/cn/0.19.0/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
Sklearn (一) 监督学习的更多相关文章
- sklearn半监督学习
标签: 半监督学习 作者:炼己者 欢迎大家访问 我的简书 以及 我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! --- 摘要:半监督学习 ...
- 关于sklearn,监督学习几种模型的对比
# K近邻,适用于小型数据集,是很好的基准模型,容易解释 from sklearn.neighbors import KNeighborsClassifier # 线性模型,非常可靠的首选算法,适用于 ...
- sklearn算法库的顶层设计
sklearn监督学习的各个模块 neighbors近邻算法,svm支持向量机,kernal_ridge核岭回归,discriminant_analysis判别分析,linear_model广义线性模 ...
- sklearn算法中的顶层设计
sklearn监督学习的各个模块 neighbors近邻算法,svm支持向量机,kernal_ridge核岭回归,discriminant_analysis判别分析,linear_model广义线性模 ...
- Python 机器学习实战 —— 监督学习(上)
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是 ...
- skearn自学路径
sklearn学习总结(超全面) 关于sklearn,监督学习几种模型的对比 sklearn之样本生成make_classification,make_circles和make_moons pytho ...
- sklearn小知识
特征缩放:# 为了追求机器学习和最优化算法的最佳性能,我们将特征缩放 from sklearn.preprocessing import StandardScaler sc = StandardSca ...
- 机器学习笔记2 – sklearn之iris数据集
前言 本篇我会使用scikit-learn这个开源机器学习库来对iris数据集进行分类练习. 我将分别使用两种不同的scikit-learn内置算法--Decision Tree(决策树)和kNN(邻 ...
- 【机器学习学习】SKlearn + XGBoost 预测 Titanic 乘客幸存
Titanic 数据集是从 kaggle下载的,下载地址:https://www.kaggle.com/c/titanic/data 数据一共又3个文件,分别是:train.csv,test.csv, ...
随机推荐
- unity中获取七天的日期
private List<string> Date; private List<string> Day; private string now; private WMG_Axi ...
- redis主从简单配置
网上有好多复杂的配置,这里我用的是windows版的redis,简单配置了下,试验了下主从,能正常使用. 1.redis-master文件夹(里面是redis),redis-slave文件夹(里面是r ...
- Python-接口自动化(一)
python基础知识(一) 一.python语言特点 1.易于学习:python有相对较少的关键字,结构简单,有一个明确定义的语法,学起来比较简单: 2.易于阅读:python代码定义的更清晰: 3. ...
- php intval 两位小数乘以100后结果少1
价格处理的时候往往是两位小数需要换算成分,如:16.33元换算为1633分,直接乘以100也就行了的,但是又使用了一个转换为整数类型的函数intval() 这下子结果就不对了,如图: 结果: 可以 ...
- Linux分区知识及企业场景分区76
文件系统就相当于装修一样.这个硬盘拿过来了,分完区了,没有格式化. 没有格式化就相当于没有装修.[分区]不是必须的. 如果没有文件系统就不能放数据,文件系统可以理解为一个软件, 它的实现形式是软件,这 ...
- 8--Python入门--函数
函数基本框架如下([]中的内容表示是或选的,可以不写):def 函数名(参数): ['''函数说明文档'''] 函数主体 [return 返回对象] 函数小例子 #我们先定义一个函数 def find ...
- Js/对数组的认识。
1.是对数组的声明: var auditTaskIds = []; 我一般的写法. var auditTaskIds1 = []; 2.向数组中添加元素: auditTaskIds.pu ...
- servlet编程操作
所谓servlet指:服务器处理来自Web浏览器或其他客户端的HTTP请求的服务器程序.客户端向服务器发送Http请求,经Tomcat封装处理转给Servlet容器,Servlet容器在把请求或回应交 ...
- iOS 多语言的实现(本地化和国际化)
配置需要国际化的语言 配置需要国际化的语言,这也是国际化之前的准备工作,无论我们是国际化App名称.代码中的字符串.图片.还是storyboard和xib,都需要进行这一步的准备工作(一个项目中需要且 ...
- 【linux基础】关于ARM板子使用O3编译选项优化
前言 应领导要求需要将最初级版本的算法移植到ARM板子上,并进行优化,以期达到实时. 平台 移植前: TX2 移植后: ARM() processor : model name : ARMv7 Pro ...