Sklearn (一) 监督学习
本系列博文是根据SKlearn的一个学习小结,并非原创!
1.直接学习TensorFlow有点不知所措,感觉需要一些基础知识做铺垫。
2.之前机器学习都是理论《Ng机器学习基础》+底层编写《机器学习实战》,现实生活基本用不到。
3.会增加一些个人总结,也会删除一些以前学过的知识。
|
广义线性模型 |
1.1 普通最小二乘法

然而,对于普通最小二乘的系数估计问题,其依赖于模型各项的相互独立性。当各项是相关的,且设计矩阵
的各列近似线性相关,那么,设计矩阵会趋向于奇异矩阵,这会导致最小二乘估计对于随机误差非常敏感,产生很大的方差。例如,在没有实验设计的情况下收集到的数据,这种多重共线性(multicollinearity)的情况可能真的会出现。
Example:
SK的数据集介绍:https://blog.csdn.net/sa14023053/article/details/52086695,暂时用不到那么多,用到什么看什么吧!
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
'''
这是一个糖尿病的数据集,
主要包括442行数据,10个属性值
分别是:Age(年龄)、
性别(Sex)、
Body mass index(体质指数)、
Average Blood Pressure(平均血压)、
S1~S6一年后疾病级数指标。
Target为一年后患疾病的定量指标。
'''
diabetes = datasets.load_diabetes()
# 取其中的一个数据进行试验
# https://blog.csdn.net/lanchunhui/article/details/49725065,
# np.newaxis的含义和分析,其中也可以写作下面的形式:
# diabetes.data[:,2][:,np.newaxis] 或者 diabetes.data[:,2][:,None]
# 目的为了增加一个轴
diabetes_X = diabetes.data[:, np.newaxis, 2] #(442,10)
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
# Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)
# The coefficients,打印权重
print('Coefficients: \n', regr.coef_)
# The mean squared error,损失函数
print("Mean squared error: %.2f"
% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))
# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
#plt.xticks()/plt.yticks()设置轴记号
#现在是明白干嘛用的了,就是人为设置坐标轴的刻度显示的值
'''
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.yticks([-1, 0, +1],
[r'$-1$', r'$0$', r'$+1$'])
'''
#plt.xticks(())
#plt.yticks(())
plt.show()

1.2 岭回归

注释:就是加了一个惩罚项,防止过拟合~~
Exanple和简单线性回归一样的表达~~
>>> from sklearn import linear_model
>>> reg = linear_model.Ridge (alpha = .5)
>>> reg.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=None, solver='auto', tol=0.001)
>>> reg.coef_
array([ 0.34545455, 0.34545455])
>>> reg.intercept_
0.13636...
1.3 贝叶斯岭回归

训练数据:
>>> from sklearn import linear_model
>>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
>>> Y = [0., 1., 2., 3.]
>>> reg = linear_model.BayesianRidge()
>>> reg.fit(X, Y)
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, tol=0.001, verbose=False)
预测数据:
>>> reg.predict ([[1, 0.]]) array([ 0.50000013])
查看权重:
>>> reg.coef_ array([ 0.49999993, 0.49999993])
参考:
http://sklearn.apachecn.org/cn/0.19.0/modules/linear_model.html
https://blog.csdn.net/eastmount/article/details/52929765
http://cwiki.apachecn.org/pages/viewpage.action?pageId=10814293
http://sklearn.apachecn.org/cn/0.19.0/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
Sklearn (一) 监督学习的更多相关文章
- sklearn半监督学习
标签: 半监督学习 作者:炼己者 欢迎大家访问 我的简书 以及 我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! --- 摘要:半监督学习 ...
- 关于sklearn,监督学习几种模型的对比
# K近邻,适用于小型数据集,是很好的基准模型,容易解释 from sklearn.neighbors import KNeighborsClassifier # 线性模型,非常可靠的首选算法,适用于 ...
- sklearn算法库的顶层设计
sklearn监督学习的各个模块 neighbors近邻算法,svm支持向量机,kernal_ridge核岭回归,discriminant_analysis判别分析,linear_model广义线性模 ...
- sklearn算法中的顶层设计
sklearn监督学习的各个模块 neighbors近邻算法,svm支持向量机,kernal_ridge核岭回归,discriminant_analysis判别分析,linear_model广义线性模 ...
- Python 机器学习实战 —— 监督学习(上)
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是 ...
- skearn自学路径
sklearn学习总结(超全面) 关于sklearn,监督学习几种模型的对比 sklearn之样本生成make_classification,make_circles和make_moons pytho ...
- sklearn小知识
特征缩放:# 为了追求机器学习和最优化算法的最佳性能,我们将特征缩放 from sklearn.preprocessing import StandardScaler sc = StandardSca ...
- 机器学习笔记2 – sklearn之iris数据集
前言 本篇我会使用scikit-learn这个开源机器学习库来对iris数据集进行分类练习. 我将分别使用两种不同的scikit-learn内置算法--Decision Tree(决策树)和kNN(邻 ...
- 【机器学习学习】SKlearn + XGBoost 预测 Titanic 乘客幸存
Titanic 数据集是从 kaggle下载的,下载地址:https://www.kaggle.com/c/titanic/data 数据一共又3个文件,分别是:train.csv,test.csv, ...
随机推荐
- DOM获取元素的方法
DOM:document object module 文档对象模型 DOM就是描述整个html页面中节点关系的图谱,如下图. 1,通过ID,获取页面中元素的方法:(上下文必须是document) do ...
- Java框架部分---面试题
说说Spring? Spring的核心是控制反转.依赖注入,Aop(面向切面)相当于把每个bean与bean之间的关系交给第 三方容器进行管理. 说SpringIOC.SpringAOP? Sprin ...
- 马凯军201771010116《面向对象程序设计(java)》第一周学习总结
马凯军201771010116<面向对象程序设计(java)>第一周学习总结 第一部分:课程准备部分 填写课程学习 平台注册账号, 平台名称 注册账号 博客园:www.cnblogs.co ...
- IntelliJ IDEA 如何生成时序图?
进入扩展程序安装 File > Settings > Plugins > Browse Repositories 搜索 SequenceDiagram,点击右边 Install 安装 ...
- logback-spring.xml 博客分享
https://juejin.im/post/5b51f85c5188251af91a7525
- python 参数传递 传值还是传引用
个人推测结论: 可变对象传引用,不可变对象传值 python里的变量不同于c中地址储值模型 a=100 b=100 print(id(a),id(b),a==b,a is b) #8790877986 ...
- 权限系统(RBAC)的数据模型设计
前言: RBAC是Role-Based Access Control的缩写, 它几乎成为权限系统的数据模型的选择标配. 之前写个两篇关于权限系统的文章, 主要涉及如何在应用中实现权限控制, 对权限系统 ...
- git创建分支并上传仓库
1. 新建分支 xxx 2. git pull (目录下 命令行将线上分支拉倒本地) 3. git checkout xxx (切换到到该分支 ) (可使用 git status 查看目前处于哪一个 ...
- CRM项目之stark组件
. stark也是一个app(用startapp stark创建),目标时把这个做成一个可以拔插的组件 . setting文件下INSTALLED_APPS 路径要配置好(app的注册) . 写好si ...
- IDEA整合Junit测试框架
首先说一下为什么会有这篇文章吧,百度没有找到一个我想要的答案.也可以理解为,作为一个java菜鸟,一个对idea和jar理解不深的人,想跟着博客一步步操作完之后发现,哎不行,之后的牢骚吧.主要是为了记 ...