[luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】
题目描述
轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的。一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道。如下图所示
N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不同的3轮状病毒,如下图所示
解法
一开始看到这道题以为是组合数,求\(C^{n-1}_{n+1}\),但是在这个图上可能会出现环,我们需要保证所有的答案都是能够联通所有的点,那么就不能这样做。
那么我们就打一个表,发现答案是斐波那契变形,\(f[i]=f[i-1]\times 3-f[i-2]+2\)。
这道题的公式推导其实是一个生成树计数,其实老实说我真的不会这个东西,但是这篇博客讲的非常非常非常清楚:orz
这道题还需要用到高精度,我的高精度模板是来自网络上的,(不要喷我QwQ)
ac代码
# include <bits/stdc++.h>
# define ms(a,b) memset(a,b,sizeof(a))
# define ri (register int)
# define inf (0x7f7f7f7f)
# define pb push_back
# define fi first
# define se second
# define pii pair<int,int>
# define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
inline int gi(){
int w=0,x=0;char ch=0;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return w?-x:x;
}
struct BigInteger {
typedef unsigned long long LL;
static const int BASE = 100000000;
static const int WIDTH = 8;
vector<int> s;
BigInteger& clean(){while(!s.back()&&s.size()>1)s.pop_back(); return *this;}
BigInteger(LL num = 0) {*this = num;}
BigInteger(string s) {*this = s;}
BigInteger& operator = (long long num) {
s.clear();
do {
s.push_back(num % BASE);
num /= BASE;
} while (num > 0);
return *this;
}
BigInteger& operator = (const string& str) {
s.clear();
int x, len = (str.length() - 1) / WIDTH + 1;
for (int i = 0; i < len; i++) {
int end = str.length() - i*WIDTH;
int start = max(0, end - WIDTH);
sscanf(str.substr(start,end-start).c_str(), "%d", &x);
s.push_back(x);
}
return (*this).clean();
}
BigInteger operator + (const BigInteger& b) const {
BigInteger c; c.s.clear();
for (int i = 0, g = 0; ; i++) {
if (g == 0 && i >= (int)s.size() && i >= (int) b.s.size()) break;
int x = g;
if (i < s.size()) x += s[i];
if (i < b.s.size()) x += b.s[i];
c.s.push_back(x % BASE);
g = x / BASE;
}
return c;
}
BigInteger operator - (const BigInteger& b) const {
assert(b <= *this);
BigInteger c; c.s.clear();
for (int i = 0, g = 0; ; i++) {
if (g == 0 && i >= s.size() && i >= b.s.size()) break;
int x = s[i] + g;
if (i < b.s.size()) x -= b.s[i];
if (x < 0) {g = -1; x += BASE;} else g = 0;
c.s.push_back(x);
}
return c.clean();
}
BigInteger operator * (const BigInteger& b) const {
int i, j; LL g;
vector<LL> v(s.size()+b.s.size(), 0);
BigInteger c; c.s.clear();
for(i=0;i<s.size();i++) for(j=0;j<b.s.size();j++) v[i+j]+=LL(s[i])*b.s[j];
for (i = 0, g = 0; ; i++) {
if (g ==0 && i >= v.size()) break;
LL x = v[i] + g;
c.s.push_back(x % BASE);
g = x / BASE;
}
return c.clean();
}
BigInteger operator / (const BigInteger& b) const {
assert(b > 0);
BigInteger c = *this;
BigInteger m;
for (int i = s.size()-1; i >= 0; i--) {
m = m*BASE + s[i];
c.s[i] = bsearch(b, m);
m -= b*c.s[i];
}
return c.clean();
}
BigInteger operator % (const BigInteger& b) const {
BigInteger c = *this;
BigInteger m;
for (int i = s.size()-1; i >= 0; i--) {
m = m*BASE + s[i];
c.s[i] = bsearch(b, m);
m -= b*c.s[i];
}
return m;
}
int bsearch(const BigInteger& b, const BigInteger& m) const{
int L = 0, R = BASE-1, x;
while (1) {
x = (L+R)>>1;
if (b*x<=m) {if (b*(x+1)>m) return x; else L = x;}
else R = x;
}
}
BigInteger& operator += (const BigInteger& b) {*this = *this + b; return *this;}
BigInteger& operator -= (const BigInteger& b) {*this = *this - b; return *this;}
BigInteger& operator *= (const BigInteger& b) {*this = *this * b; return *this;}
BigInteger& operator /= (const BigInteger& b) {*this = *this / b; return *this;}
BigInteger& operator %= (const BigInteger& b) {*this = *this % b; return *this;}
bool operator < (const BigInteger& b) const {
if (s.size() != b.s.size()) return s.size() < b.s.size();
for (int i = s.size()-1; i >= 0; i--)
if (s[i] != b.s[i]) return s[i] < b.s[i];
return false;
}
bool operator >(const BigInteger& b) const{return b < *this;}
bool operator<=(const BigInteger& b) const{return !(b < *this);}
bool operator>=(const BigInteger& b) const{return !(*this < b);}
bool operator!=(const BigInteger& b) const{return b < *this || *this < b;}
bool operator==(const BigInteger& b) const{return !(b < *this) && !(b > *this);}
};
ostream& operator << (ostream& out, const BigInteger& x) {
out << x.s.back();
for (int i = x.s.size()-2; i >= 0; i--) {
char buf[20];
sprintf(buf, "%08d", x.s[i]);
for (int j = 0; j < strlen(buf); j++) out << buf[j];
}
return out;
}
istream& operator >> (istream& in, BigInteger& x) {
string s;
if (!(in >> s)) return in;
x = s;
return in;
}
# define N 105
BigInteger f[N];
int main(){
int n = gi ();
f[1]=1; f[2]=5;
for (int i=3;i<=n;i++) f[i]=f[i-1]*3-f[i-2]+2;
cout<<f[n]<<endl;
return 0;
}
[luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】的更多相关文章
- 洛谷——P2626 斐波那契数列(升级版)矩阵
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- HDU1250 高精度斐波那契数列
Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- poj3070 求斐波那契数列第n项 ——矩阵快速幂
题目:http://poj.org/problem?id=3070 用矩阵快速幂加速递推. 代码如下: #include<iostream> #include<cstdio> ...
- [BSGS算法]纯水斐波那契数列
学弟在OJ上加了道"非水斐波那契数列",求斐波那契第n项对1,000,000,007取模的值,n<=10^15,随便水过后我决定加一道升级版,说是升级版,其实也没什么变化,只 ...
- HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Li ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】
BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...
- bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2234 Solved: 1227[Submit][Statu ...
- bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)
1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...
随机推荐
- Ionic 部分手机升级不成功的问题
Android端的手机App发布之后的一段时间,用户反馈App无法升级的情况. 原因分析: 对代码进行错误在线,提示是FileNOTFindException错误,确定是下载的时候保存的目的路径 不存 ...
- C# 枚举基本用法及扩展方法
没什么好说的,都是些基础! 代码如下: using System; using System.Collections.Generic; using System.ComponentModel; usi ...
- Nextcloud私有云盘在Centos7下的部署笔记
搭建个人云存储一般会想到ownCloud,堪称是自建云存储服务的经典.而Nextcloud是ownCloud原开发团队打造的号称是“下一代”存储.初一看觉得“口气”不小,刚推出来就重新“定义”了Clo ...
- 第六次Scrum meeting
第六次Scrum meeting 任务及完成度: 成员 12.21 12.22 陈谋 任务1040:完成stackoverflow的数据处理后的json处理(98%) 任务1114-1:完成对网页数 ...
- Linux内核及分析 第二周 操作系统是如何工作的?
计算机是如何工作的? 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的时候堆栈机制对于计算机来说并不那么重要,但有了高级语言及函 ...
- 读书笔记(chapter7)
第七章 链接 链接是将各种代码和数据部分收集起来并且组合成为一个单一文件的过程.1.这个文件可被加载到存储器并执行:2.也可以执行于加载时,也就是在程序被加载器加载到存储器并执行:3.甚至可以执行于运 ...
- 2丶利用NABCD模型进行竞争性需求分析
确定项目:公交查询系统 分析小组:在路上 选择比努力更重要.一个项目成功自然离不开组员们的努力.但是,光努力是不够的.还需要用户有需求,能快速实现. 这些东西,看似很虚,却能让我们少走不少弯路.做项目 ...
- Practice4 阅读《构建之法》6-7章
关于第五章后面的阅读已经在Practice3中有所感悟,下面是6-7章的读书笔记. 第6章 敏捷流程这一章讲了“敏捷流程”这一概念,关于这一名词我是很陌生的,在阅读之后有了一定的理解.敏捷流程是提供了 ...
- 用户模拟+spec
用户模拟:用户模拟的对象分别为小学二年级学生,学生父亲以及小学教师. 名字 孔小颖 性别 男 职业 小学生 收入 来自父母给予 知识层次和能力 小学二年级 生活/工作情况 在学校上课,数学成绩较差,放 ...
- David Silver强化学习Lecture2:马尔可夫决策过程
课件:Lecture 2: Markov Decision Processes 视频:David Silver深度强化学习第2课 - 简介 (中文字幕) 马尔可夫过程 马尔可夫决策过程简介 马尔可夫决 ...