题目大意:给定一个 N 个顶点的无向图,边有边权,如果存在,求出该无向图的最小环,即:边权和最小的环,并输出路径。

题解:由于无向图,且节点数较少,考虑 Floyd 算法,在最外层刚开始遍历到第 K 号节点时,\(d[i][j]\) 中记录着经过前 k-1 个点,从 i 到 j 的最短距离。因此,可以依次考虑每一个结构:\(\{d[i][j]+G[i][k]+G[k][j] \}\),这便是一个环形结构,每次更新答案贡献即可。

至于路径输出,\(get\_path(int\ i,int\ j)\) 函数意为获得从节点 i 到节点 j 的中间节点,不包括端点是因为每次递归时会造成重复记录,因此需要手动额外记录端点。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=110;
const int inf=0x3f3f3f3f; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} int n,m,ans=inf,G[maxn][maxn],d[maxn][maxn],mid[maxn][maxn];
vector<int> p; void read_and_parse(){
n=read(),m=read();
memset(G,0x3f,sizeof(G));
for(int i=1;i<=n;i++)G[i][i]=0;
for(int i=1,x,y,z;i<=m;i++){
x=read(),y=read(),z=read();
G[x][y]=G[y][x]=min(G[x][y],z);
}
memcpy(d,G,sizeof(G));
} void get_path(int i,int j){
if(!mid[i][j])return;
get_path(i,mid[i][j]);
p.push_back(mid[i][j]);
get_path(mid[i][j],j);
} void solve(){
for(int k=1;k<=n;k++){
for(int i=1;i<k;i++)
for(int j=i+1;j<k;j++)
if((long long)d[i][j]+G[i][k]+G[k][j]<ans){
ans=d[i][j]+G[i][k]+G[k][j];
p.clear();
p.push_back(i);get_path(i,j);
p.push_back(j),p.push_back(k);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)if(d[i][j]>d[i][k]+d[k][j]){
d[i][j]=d[i][k]+d[k][j];
mid[i][j]=k;
}
}
if(ans==inf)puts("No solution.");
else for(int i=0;i<p.size();i++)printf("%d%c",p[i],i==p.size()-1?'\n':' ');
} int main(){
read_and_parse();
solve();
return 0;
}

【POJ1734】Sightseeing Trip 无向图最小环的更多相关文章

  1. poj1734 Sightseeing trip【最小环】

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:8588   Accepted:3224   ...

  2. POJ 1734 Sightseeing trip(无向图最小环+输出路径)

    题目链接 #include <cstdio> #include <string> #include <cstring> #include <queue> ...

  3. URAL 1004 Sightseeing Trip(最小环)

    Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...

  4. poj1734 Sightseeing trip(Floyd求无向图最小环)

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  5. poj1734 Sightseeing trip[最小环]

    一个最小环裸题.最小环的两种求法dijkstra和Floyd直接参见这里我就是从这里学的,不想写了. 注意这里最重要的一个点是利用了Floyd的dp过程中路径上点不超过$k$这一性质,来枚举环上最大编 ...

  6. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  7. POJ1734 - Sightseeing trip

    DescriptionThere is a travel agency in Adelton town on Zanzibar island. It has decided to offer its ...

  8. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  9. 【poj1734】Sightseeing trip

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8520   Accepted: 3200 ...

随机推荐

  1. 【数据库】Mysql中主键的几种表设计组合的实际应用效果

    写在前面 前前后后忙忙碌碌,度过了新工作的三个月.博客许久未新,似乎对忙碌没有一点点防备.总结下来三个月不断的磨砺自己,努力从独乐乐转变到众乐乐,体会到不一样的是,连办公室的新玩意都能引起莫名的兴趣了 ...

  2. Linux 磁盘与磁盘分区

    Linux 系统中所有的硬件设备都是通过文件的方式来表现和使用的,我们将这些文件称为设备文件,硬盘对应的设备文件一般被称为块设备文件.本文介绍磁盘设备在 Linux 系统中的表示方法以及如何创建磁盘分 ...

  3. 10 分钟理解 BFC 原理

    一.常见定位方案 在讲 BFC 之前,我们先来了解一下常见的定位方案,定位方案是控制元素的布局,有三种常见方案: 普通流 (normal flow) 在普通流中,元素按照其在 HTML 中的先后位置至 ...

  4. Struts2中的图片验证码

    1.Struts中建一个action <action name="Code" class="LoginAction" method="code& ...

  5. Android中加解密算法大全

    Base64编码 Base64是网络上最常见的用于传输8Bit字节代码的编码方式之一,本质上是一种将二进制数据转成文本数据的方案,对于非二进制数据,是先将其转换成二进制形式,然后每连续6比特(2的6次 ...

  6. JavaScript表单提交不能清空type为hidden的input快速解决方案

    http://stackoverflow.com/questions/2559616/javascript-true-form-reset-for-hidden-fields 把input type= ...

  7. pcntl php多进程

    <?php $i=0;while($i!=5){ $pid = pcntl_fork(); if ($pid == 0) { echo $pid."---------hahah&quo ...

  8. WorkStation 虚拟机迁移到 ESXi的后续处理.

    自己遇到了然后按照blog http://blog.sina.com.cn/s/blog_79a8b8e10102w8bm.html 解决 特此记录一下. 将Workstation的vmdk文件导入到 ...

  9. 如何使用git在github上开发的时候和别人在别人仓库上进行协作编程,最后再统一提交

    因为总是忘记,所以记录一下. 这里首先需要添加你需要操作对象的仓库到你的远程仓库并给个名字,才能进行操作.这里我用我同事的邮箱做比喻.(如果对方为私有仓库,你必须要有同样的权限) 使用命令 git r ...

  10. js break和continue

    break的兩種形式: break:未加標籤,適用於switch和循環結構 break labelname:適用於任何代碼塊: continue的兩種形式: continue:適用於循環結構 cont ...