#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/5/24 15:03
# @Author : zhang chao
# @File : s.py
from scipy import linalg as lg
#按标签选择
#通过标签选择多轴 import pandas as pd
import numpy as np dates = pd.date_range('', periods=6)
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
print("df:")
print(df)
print('-'*50)
#通过索引选择
print("df.loc[:,['A','B']]")
print(df.loc[:,['A','B']])
#显示标签切片,包括两个端点
print('-'*50)
print("df.loc['20170102':'20170104',['A','B']]")
print(df.loc['':'',['A','B']])
print('-'*50)
#获得标量值 获取m行n列的单个数据值
print("df.loc[dates[0],'A'")
print(df.loc[dates[0],'A'])
#快速访问标量(等同于先前的方法)
print('-'*50)
print("df.at[dates[0],'A']")
print(df.at[dates[0],'A'])#at快速访问单个值;loc访问多指
#通过传递的整数的位置选择 通过下标选择
print("df.iloc[3]")
print(df.iloc[3])
print('-'*50)
#通过整数切片,类似于numpy/python
print("df.iloc[3:5,0:2]")
print(df.iloc[3:5,0:2])#切片
#通过整数位置的列表,类似于numpy/python样式
print("df.iloc[[1,2,4],[0,2]]")
print(df.iloc[[1,2,4],[0,2]])#列表
print("df.iloc[1:3,:]")
print(df.iloc[1:3,:])
print("df.iloc[:,1:3]")
print(df.iloc[:,1:3])
print("df.iloc[1,1]")
print(df.iloc[1,1])
#要快速访问标量(等同于先前的方法)
print("print(df.iat[1,1])")
print(df.iat[1,1])
#布尔索引
#使用单列的值来选择数据
print("df[df.A > 0]")
print(df[df.A > 0][df.B<0])#多条件选择
print("df[df > 0]")
print(df[df > 0])#从满足布尔条件的DataFrame中选择值
#使用isin()方法进行过滤
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three']
print("df2")
print(df2)
print("============= start to filter =============== ")
print("isin")
print(df2[df2['E'].isin(['two','four'])])

D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
df:
A B C D
2017-01-01 -1.353900 -0.737163 -0.266858 -0.219116
2017-01-02 -2.328935 0.297892 0.244013 0.331435
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623
2017-01-04 -2.117530 -0.480186 0.174002 -0.197551
2017-01-05 -0.312444 -0.958863 0.004229 -0.998425
2017-01-06 0.957020 -0.147027 0.125730 -0.643826
--------------------------------------------------
df.loc[:,['A','B']] #loc为原始索引 用键索引 字符索引
A B
2017-01-01 -1.353900 -0.737163
2017-01-02 -2.328935 0.297892
2017-01-03 0.442864 -1.837813
2017-01-04 -2.117530 -0.480186
2017-01-05 -0.312444 -0.958863
2017-01-06 0.957020 -0.147027
--------------------------------------------------
df.loc['20170102':'20170104',['A','B']]
A B
2017-01-02 -2.328935 0.297892
2017-01-03 0.442864 -1.837813
2017-01-04 -2.117530 -0.480186
--------------------------------------------------
df.loc[dates[0],'A'
-1.3539004392106717
--------------------------------------------------
df.at[dates[0],'A']#at快速取值
-1.3539004392106717

--------------------------------------------------
df.iloc[3]#iloc为数字索引
A -2.117530
B -0.480186
C 0.174002
D -0.197551
Name: 2017-01-04 00:00:00, dtype: float64
--------------------------------------------------
df.iloc[3:5,0:2]
A B
2017-01-04 -2.117530 -0.480186
2017-01-05 -0.312444 -0.958863
--------------------------------------------------
df.iloc[[1,2,4],[0,2]]
A C
2017-01-02 -2.328935 0.244013
2017-01-03 0.442864 -0.523082
2017-01-05 -0.312444 0.004229
--------------------------------------------------
df.iloc[1:3,:]
A B C D
2017-01-02 -2.328935 0.297892 0.244013 0.331435
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623
--------------------------------------------------
df.iloc[:,1:3]
B C
2017-01-01 -0.737163 -0.266858
2017-01-02 0.297892 0.244013
2017-01-03 -1.837813 -0.523082
2017-01-04 -0.480186 0.174002
2017-01-05 -0.958863 0.004229
2017-01-06 -0.147027 0.125730
--------------------------------------------------
df.iloc[1,1]
0.29789175201181145
--------------------------------------------------
print(df.iat[1,1])#iat快速数字索引取值
0.29789175201181145
--------------------------------------------------
df[df.A > 0]#按照A列的元素大于0 进行筛选取值
A B C D
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623
2017-01-06 0.957020 -0.147027 0.125730 -0.643826
--------------------------------------------------
df[df > 0]#保留数据大于0的元素,费大于0的元素为NaN
A B C D
2017-01-01 NaN NaN NaN NaN
2017-01-02 NaN 0.297892 0.244013 0.331435
2017-01-03 0.442864 NaN NaN NaN
2017-01-04 NaN NaN 0.174002 NaN
2017-01-05 NaN NaN 0.004229 NaN
2017-01-06 0.957020 NaN 0.125730 NaN
--------------------------------------------------
df2
A B C D E
2017-01-01 -1.353900 -0.737163 -0.266858 -0.219116 one
2017-01-02 -2.328935 0.297892 0.244013 0.331435 one
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623 two
2017-01-04 -2.117530 -0.480186 0.174002 -0.197551 three
2017-01-05 -0.312444 -0.958863 0.004229 -0.998425 four
2017-01-06 0.957020 -0.147027 0.125730 -0.643826 three
--------------------------------------------------
============= start to filter ===============
isin

df2['E'].isin(['two','four'])
df2[df2['E'].isin(['two','four'])]

#如果E列中的元素在 isin里面 则获取到值
A B C D E
2017-01-03 0.442864 -1.837813 -0.523082 -1.058623 two
2017-01-05 -0.312444 -0.958863 0.004229 -0.998425 four


Process finished with exit code 0

 

pandas取值的更多相关文章

  1. Python数据科学手册-Pandas:数据取值与选择

    Numpy数组取值 切片[:,1:5], 掩码操作arr[arr>0], 花哨的索引 arr[0, [1,5]],Pandas的操作类似 Series数据选择方法 Series对象与一维Nump ...

  2. 告别硬编码,mysql 如何实现按某字段的不同取值进行统计

    上周我突然意识到,我在grafana上写的 sql 语句存在多处硬编码.这篇笔记将记录如何实现没有硬编码的sql语句,以及自学编程过程中如何应对自己的笨拙代码和难题不断的状况. 1.有效但粗笨的硬编码 ...

  3. 如何解决流程开发中SheetRadioButtonList页面取值问题

    分享一个常见的取值问题. 应用场景: SheetRadioButtonList控件,点击其中一项执行事件操作.如果是页面加载的情况下,值就无法取到. 具体原因如下: 我给SheetRadioButto ...

  4. jQuery radio的取值与赋值

    取值: $("input[name='radioName']:checked").val(); 赋值: $("input[name='radioName'][value= ...

  5. python通过函数改变变量取值

    严格讲应该是"通过函数调用,改变引用对象".python中,要区分"变量名"和"对象" 如果是类的对象,是引用类型的,那么可以通过函数调用, ...

  6. jsf初学selectOneMenu 绑定与取值

    jsf 的selectOneMenu 最后生成的<select>标签.这里涉及到一个binding 起初一直不知道是干嘛的,后来参考了其他文章.就相当于在asp.net 中如:<as ...

  7. CYQ.Data 快速开发之UI(赋值、取值、绑定)原理

    昨夜园子猴子问了几个我CYQ.Data使用的小问题,经过简单解答后,他表示“妈妈再也不用担心我的学习",并于事后以资鼓励,希望这框架越走越好. 除了技术上的交流,双方在生活,S上面的问题上也 ...

  8. EditText的inputType常用取值

    最近经过实际试验,总结了InputType几个常用取值表示的含义: 1.none, text, textVisiblePassword: 无任何输入限制 2.textMultiLine: 允许多行输入 ...

  9. jquery select取值,赋值操作

    select">jquery select取值,赋值操作 一.获取Select 获取select 选中的 text : $("#ddlRegType").find( ...

随机推荐

  1. 在Qt项目中如何添加一个已有的项目作为子项目

    新建一个子目录项目(具体方法参见<类似Visual Studio一样,使用Qt Creator管理多个项目,创建子项目>),然后需要添加的项目移动到该子目录项目目录下,再在其pro文件中添 ...

  2. Echarts中太阳图(Sunburst)的实例

    Echarts中太阳图(Sunburst)的实例 目前在项目中要实现一个Echars中的太阳图,但是Echars中的太阳图的数据格式是一个树形结构,如下代码格式如下: var mapData = [ ...

  3. QT数据类型的转化总结

    QT 中的数据类型有很多的,在写代码的过程中难免会遇到 数据类型的转换. 1.QString转QByteArray QByteArray byte;QString string;byte = stri ...

  4. 如何屏蔽SkylineGlobe提供的三维地图控件上的快捷键

    SkyllineGlobe提供的 <OBJECT ID=" TerraExplorer3DWindow" CLASSID="CLSID:3a4f9192-65a8- ...

  5. day85

    频率校验 源码分析 声明:基于rest_framework的频率校验 1.首先我们进入到APIView下的dispatch,因为由此方法开始分发的 2.可以看到dispatch方法下有一个initia ...

  6. 你真的会python嘛?

    前言 我这个博客一直都是一些技术分享,show code的地方,我从来没有写过个人生活或者情感杂谈,当然我也从来没有谈论过我对什么东西的喜恶. 很多人喜欢喷XX语言,喜欢谈论XX和YY的优缺,甚至凑了 ...

  7. ASP.NET Core 使用外部登陆提供程序登陆的流程,以及身份认证的流程 (转载)

    阅读目录 在Asp.Net Core 中使用外部登陆(google.微博...) 中间件管道 The Authentication Middleware The Challenge 与认证中间件进行交 ...

  8. 【知识整理】这可能是最好的RxJava 2.x 入门教程(一)

    一.前言 这可能是最好的RxJava 2.x入门教程系列专栏 文章链接: 这可能是最好的RxJava 2.x 入门教程(完结版)[强力推荐] 这可能是最好的RxJava 2.x 入门教程(一) 这可能 ...

  9. 开启C语言的学习之门

    本人是一枚工业界的码农,为了职业道路越来越宽广决定向上位机方面进军,C语言曾经在大学里面学过点皮毛但是离应用远远不够,尽量每天在工作之余更新自己学习的进度,同时也希望有大神能给予在编程道路上的指导,话 ...

  10. proxy_pass反向代理配置中url后面加不加/的说明

    在日常的web网站部署中,经常会用到nginx的proxy_pass反向代理,有一个配置需要弄清楚:配置proxy_pass时,当在后面的url加上了/,相当于是绝对根路径,则nginx不会把loca ...