Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)
\(Description\)
给定\(n\)个正整数\(a_i\)。求有多少个子序列\(a_{i_1},a_{i_2},...,a_{i_k}\),满足\(a_{i_1},a_{i_2},...,a_{i_k}\) \(and\)起来为\(0\)。
\(n\leq10^6,\quad 0\leq a_i\leq10^6\)。
\(Solution\)
这个数据范围。。考虑按位容斥:
令\(g_x\)表示\(x\)的二进制表示中\(1\)的个数,\(f_x\)表示有多少个\(a_i\)满足\(a_i\&x=x\)。
想要让选出来的子序列最终\(and\)和为\(x\),那么只能从这\(f_x\)个数中选。
所以\(Ans=\sum_{x=0}^{lim}(-1)^{g_x}(2^{f_x}-1)\)。
那么如何求\(f_x\)?
\(a_i\&x=x\),即\(x\)是\(a_i\)的子集,所以对\(f_x\)枚举超集更新即可。复杂度\(O(2^nn)\)。
注意因为写法问题数组要开两倍。
又一不小心一个rank1...
//62ms 35500KB
#include <cstdio>
#include <cctype>
#include <algorithm>
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define mod 1000000007
#define lb(x) (x&-x)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
typedef long long LL;
const int N=3e6+5;
int bit[N],pw[N],f[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
int n=read(),lim=0;
for(int t,i=1; i<=n; ++i) ++f[t=read()],lim=std::max(lim,t);
pw[0]=1;
for(int i=1; i<=n; ++i) pw[i]=pw[i-1]<<1, pw[i]>=mod&&(pw[i]-=mod);
for(int i=0; 1<<i<=lim; ++i)
for(int s=0; s<=lim; ++s)
if(!(s>>i&1)) Add(f[s],f[s|(1<<i)]);
LL ans=0;
for(int i=1; i<=lim; ++i) bit[i]=bit[i^lb(i)]^1;
for(int i=0; i<=lim; ++i) ans+=bit[i]?mod-pw[f[i]]+1:pw[f[i]]-1;
printf("%I64d\n",ans%mod);
return 0;
}
Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)的更多相关文章
- Codeforces 449D Jzzhu and Numbers(高维前缀和)
[题目链接] http://codeforces.com/problemset/problem/449/D [题目大意] 给出一些数字,问其选出一些数字作or为0的方案数有多少 [题解] 题目等价于给 ...
- Codeforces 449D Jzzhu and Numbers
http://codeforces.com/problemset/problem/449/D 题意:给n个数,求and起来最后为0的集合方案数有多少 思路:考虑容斥,ans=(-1)^k*num(k) ...
- BZOJ4036:按位或 (min_max容斥&高维前缀和)
Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...
- [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)
[luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...
- luoguP3175 [HAOI2015]按位或 min-max容斥 + 高维前缀和
考虑min-max容斥 \(E[max(S)] = \sum \limits_{T \subset S} min(T)\) \(min(T)\)是可以被表示出来 即所有与\(T\)有交集的数的概率的和 ...
- [Hdu-6053] TrickGCD[容斥,前缀和]
Online Judge:Hdu6053 Label:容斥,前缀和 题面: 题目描述 给你一个长度为\(N\)的序列A,现在让你构造一个长度同样为\(N\)的序列B,并满足如下条件,问有多少种方案数? ...
- Codeforces 595B. Pasha and Phone 容斥
B. Pasha and Phone time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- Codeforces Round #258 (Div. 2) 容斥+Lucas
题目链接: http://codeforces.com/problemset/problem/451/E E. Devu and Flowers time limit per test4 second ...
- Relatively Prime Powers CodeForces - 1036F (莫比乌斯函数容斥)
Relatively Prime Powers CodeForces - 1036F Consider some positive integer xx. Its prime factorizatio ...
随机推荐
- 常见的排序算法(直接插入&选择排序&二分查找排序)
1.直接插入排序算法 源码: package com.DiYiZhang;/* 插入排序算法 * 如下进行的是插入,排序算法*/ public class InsertionSort { pub ...
- Python交换a,b两个数值的三种方式
# coding:utf-8 a = 1 b = 2 # 第一种方式 # t = a # 临时存放变量值 # a = b # b = t # 第二种方式 # a = a + b # a的值已经不是原始 ...
- C++ shut down a computer
前阵子有朋友问我,怎么用C语言写一个小程序,控制电脑关机.这个我真的不懂,这几天闲着,就上网搜了搜,整理一下. IDE: Code::Blocks 16.01 操作系统:Windows 7 x64 # ...
- 正则re模块
正则表达式的特殊字符: 语法: re.match(正则语法,字符串) # re.match() 为关键字 group(1) # 取出第一个匹配 括号中的值,1位第一个括号内的值 1. 特殊字符 1 . ...
- python:字符串转换成字节的三种方式及字符转码问题
str='zifuchuang' 第一种 b'zifuchuang'第二种bytes('zifuchuang',encoding='utf-8')第三种('zifuchuang').encode('u ...
- Git基础(三) 跟踪文件
检查当前文件状态 git status 跟踪新文件 git add README 状态简览 git status -s 或 git status --short 忽略文件 创建一个名为.gitigno ...
- 将Elasticsearch的快照备份到HDFS
1.安装Elasticsearch插件repository-hdfs 下载地址:https://artifacts.elastic.co/downloads/elasticsearch-plugins ...
- 从oracle到mysql
过去四年一直是使用oracle,现在要开始使用mysql了,对于使用中发现的不同之处,我在此记录 mysql在linux下表名区分大小写,windows下表名不区分大小写 mysql没有number类 ...
- [转] webpack3最新版本配置研究(五) devtool,webpack-dev-server,CommonsChunkPlugin
devtool devtool是webpack中config自带的属性只要使用就可以了不用安装 webpack官网的解释如下 当 webpack 打包源代码时,可能会很难追踪到错误和警告在源代码中的原 ...
- string.format格式化字符串中转义大括号“{}”
今天,用Java读取配置文件占位符,使用String.Format(string format,object arg0)方法.以前只知“{0}”为索引占位符(即格式项),与参数列表中的第一个对象相对应 ...