Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画过程如下图

模板

编表写法

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define INF 10000000
#define maxn 3000010
int qd;//到那个点的距离
int dis[maxn];
int vis[maxn];
int n,m,q,head[maxn];
struct node{
int u,v,w,next;
}e[maxn];
void add(int u,int v,int w,int i){
e[i].u=u;//编号为i的对象为u
if(u==qd) dis[v]=w;//qd到各点的距离//直接入队
e[i].v=v;//编号为i的u的对象为v
e[i].w=w;//编号为i的u->v 的距离是w
e[i].next=head[u];//上一个编号
head[u]=i; //记录现在编号
}
void djc(int u){
dis[u]=;vis[u]=;
for(int i=;i<=n;i++){
int m=INF;
for(int j=;j<=n;j++){
if(!vis[j]&&dis[j]<m){
u=j;
m=dis[j];
}
}
//if(u==qd) break;//没找到路
vis[u]=;//标记已走过,无论有没有找到路
for(int l=head[u];l;l=e[l].next){//当前编号往前找,一直找到0为止,0前再无有效编号
if(dis[e[l].v]>dis[e[l].u]+e[l].w){//更新最短路径
dis[e[l].v]=dis[e[l].u]+e[l].w;
}
} }
}
int main()
{
int m,u,v,x,y,z;
memset(dis,,sizeof dis);
scanf("%d%d%d%d",&n,&m,&qd,&v);
for(int i=;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z,i);
add(y,x,z,i+m);
}
djc(qd);
printf("%d\n",dis[v]);//输出qd->v的最短路径
return ;
}

最短路径—Dijkstra算法的更多相关文章

  1. 网络最短路径Dijkstra算法

    最近在学习算法,看到有人写过的这样一个算法,我决定摘抄过来作为我的学习笔记: <span style="font-size:18px;">/* * File: shor ...

  2. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  3. 最短路径-Dijkstra算法与Floyd算法

    一.最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2   ADCE:3   ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径 ...

  4. 数据结构实验之图论七:驴友计划 ( 最短路径 Dijkstra 算法 )

    数据结构实验之图论七:驴友计划 Time Limit: 1000 ms           Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...

  5. 最短路径——Dijkstra算法以及二叉堆优化(含证明)

    一般最短路径算法习惯性的分为两种:单源最短路径算法和全顶点之间最短路径.前者是计算出从一个点出发,到达所有其余可到达顶点的距离.后者是计算出图中所有点之间的路径距离. 单源最短路径 Dijkstra算 ...

  6. 有向网络(带权的有向图)的最短路径Dijkstra算法

    什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点 ...

  7. Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...

  8. 求两点之间最短路径-Dijkstra算法

     Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...

  9. 单源最短路径——Dijkstra算法学习

    每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好 ...

随机推荐

  1. thinkPHP学习笔记(2)

    1.调试模式 设置调试模式部分代码如下: <?php define('APP_DEBUG',TRUE); // 开启调试模式 常量定义代码 require '/ThinkPHP框架所在目录/Th ...

  2. Nunit在VS2010加载不了程序集的解决办法

    本机环境: Win7 64位 旗舰版 VS2010 Nunit2.6.3 故障重现步骤: 1.在启动外部应用程序中增加C:\Program Files (x86)\NUnit 2.6.3\bin\nu ...

  3. android 回调函数二:应用实例

    前言:如果对android回调的概念不明白的请看:android 回调函数一:基本概念 1.定义接口 package com.app.util; public interface ZYJCallBac ...

  4. SQL JOIN

  5. CSS 包含选择器(九)

    一.包含选择器 包含选择器中前后两部分之间以空格隔开,根据左侧选择符指定的祖先元素,然后在该元素下寻找匹配右侧的选择侧符的下级元素 定义包含选择器时,必须保证在HTML结构中第一个对象能够包含第二个对 ...

  6. IOS 网络浅析-(九 NSURLSession代理简介)

    从最开始什么都不懂的小白,到到现在略知一二的小孩.我觉得不仅仅是我,大家应该都会注意到代理几乎贯穿着IOS,那么问题来了,我接下来要说什么呢,那就是.标题的内容啦.上篇网络系列的文章我介绍了NSURL ...

  7. xib命名注意事项--防止被其他控制器意外地 当做默认的 view了

    注意: 1.创建的xib如果不是想给指定的控制器做view的话,命名就要注意了! 2.最好是不要命名和控制器名字相关的xib. 如下举例说明一下: - (void)touchesBegan:(NSSe ...

  8. iOS-绘图(Quartz2D)的简单使用(原创)

    前言 附上绘图demo--https://github.com/yangfangxue/YFX_Quartz-2D 什么是Quartz2D? Quartz 2D是一个二维图形绘制引擎,支持ios环境和 ...

  9. 肯爹的 StringUtils.isNumeric(String str)

    在项目中遇到一处bug,调试的结果竟然是StringUtils.isNumeric(String str) 在捣鬼(采用的是org.apache.commons.lang.StringUtils),下 ...

  10. 有关RDS上只读实例延时分析-同适用于自建MySQL主从延时分析判断

    个人不是很喜欢在技术上跟人互喷,尤其是不在同一个岗位上的人.一方面本人的性格如此,另一方面,我自身的口水也确实是不行,人生经历了第一次的双11洗礼,在大促的环境下,总算知道了有些东西是否应该规避,这次 ...