最短路径—Dijkstra算法
Dijkstra算法
1.定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)
2.算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
执行动画过程如下图
模板
编表写法
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define INF 10000000
#define maxn 3000010
int qd;//到那个点的距离
int dis[maxn];
int vis[maxn];
int n,m,q,head[maxn];
struct node{
int u,v,w,next;
}e[maxn];
void add(int u,int v,int w,int i){
e[i].u=u;//编号为i的对象为u
if(u==qd) dis[v]=w;//qd到各点的距离//直接入队
e[i].v=v;//编号为i的u的对象为v
e[i].w=w;//编号为i的u->v 的距离是w
e[i].next=head[u];//上一个编号
head[u]=i; //记录现在编号
}
void djc(int u){
dis[u]=;vis[u]=;
for(int i=;i<=n;i++){
int m=INF;
for(int j=;j<=n;j++){
if(!vis[j]&&dis[j]<m){
u=j;
m=dis[j];
}
}
//if(u==qd) break;//没找到路
vis[u]=;//标记已走过,无论有没有找到路
for(int l=head[u];l;l=e[l].next){//当前编号往前找,一直找到0为止,0前再无有效编号
if(dis[e[l].v]>dis[e[l].u]+e[l].w){//更新最短路径
dis[e[l].v]=dis[e[l].u]+e[l].w;
}
} }
}
int main()
{
int m,u,v,x,y,z;
memset(dis,,sizeof dis);
scanf("%d%d%d%d",&n,&m,&qd,&v);
for(int i=;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z,i);
add(y,x,z,i+m);
}
djc(qd);
printf("%d\n",dis[v]);//输出qd->v的最短路径
return ;
}
最短路径—Dijkstra算法的更多相关文章
- 网络最短路径Dijkstra算法
最近在学习算法,看到有人写过的这样一个算法,我决定摘抄过来作为我的学习笔记: <span style="font-size:18px;">/* * File: shor ...
- 单源最短路径Dijkstra算法,多源最短路径Floyd算法
1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...
- 最短路径-Dijkstra算法与Floyd算法
一.最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1 ADE:2 ADCE:3 ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径 ...
- 数据结构实验之图论七:驴友计划 ( 最短路径 Dijkstra 算法 )
数据结构实验之图论七:驴友计划 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...
- 最短路径——Dijkstra算法以及二叉堆优化(含证明)
一般最短路径算法习惯性的分为两种:单源最短路径算法和全顶点之间最短路径.前者是计算出从一个点出发,到达所有其余可到达顶点的距离.后者是计算出图中所有点之间的路径距离. 单源最短路径 Dijkstra算 ...
- 有向网络(带权的有向图)的最短路径Dijkstra算法
什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点 ...
- Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例
本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...
- 求两点之间最短路径-Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...
- 单源最短路径——Dijkstra算法学习
每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好 ...
随机推荐
- Spark中的RDD操作简介
map(func) 对数据集中的元素逐一处理,变为新的元素,但一个输入元素只能有一个输出元素 scala> pairData.collect() res6: Array[Int] = Array ...
- IOS 杂笔-5(NSTimer极浅析)
1.timer都会对它的target进行retain,我们需要小心对待这个target的生命周期问题,尤其是重复性的timer. 2. timer不是一种实时的机制,会存在延迟,而且延迟的程度跟当前线 ...
- iOS UIButton添加圆角,添加边框
//准备工作 UIButton *button = [UIButton buttonWithType:UIButtonTypeCustom]; button.frame = CGRectMake(,, ...
- 如何写BaseDomain
上图摘自<Spring3.x企业应用开发实战> 提到了使用org.apache.commons.lang3.builder ToStringBuilder进行toString方法的统一. ...
- Win10 下使用 ionic 框架开发 android 应用之搭载开发环境
转载请注明出处:http://www.cnblogs.com/titibili/p/5102035.html 谢谢~ 1.下载JDK并配置Java运行环境 http://www.oracle.com/ ...
- maven 错误No goals have been specified for this build. You must specify a valid lifecycle phase or a goal in the format
[INFO] Scanning for projects... [INFO] ------------------------------------------------------------- ...
- Effective Java 17 Design and document for inheritance or else prohibit it
Principles The class must document its self-use of overridable methods. A class may have to provide ...
- mysql由浅入深探究(一)----数据库简介与mysql安装
mysql简介: 首先谈到mysql,我们要知道这是一个开源的数据库,与开源对应的就是free,但这并不意味着其性能会比很差,mysql同样能支持千万级以上的大数据量,甚至更多.同时mysql还支持许 ...
- 使用Sqoop,最终导入到hive中的数据和原数据库中数据不一致解决办法
Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql.postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL , ...
- NoSQL介绍
NoSQL(Not Only SQL),是一种非关系型数据库:说到这里,大家需要了解关系型数据库和非关系型数据库的区别,可参考:从关系型数据库到非关系型数据库. NoSQL是以key-value形式存 ...