Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画过程如下图

模板

编表写法

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define INF 10000000
#define maxn 3000010
int qd;//到那个点的距离
int dis[maxn];
int vis[maxn];
int n,m,q,head[maxn];
struct node{
int u,v,w,next;
}e[maxn];
void add(int u,int v,int w,int i){
e[i].u=u;//编号为i的对象为u
if(u==qd) dis[v]=w;//qd到各点的距离//直接入队
e[i].v=v;//编号为i的u的对象为v
e[i].w=w;//编号为i的u->v 的距离是w
e[i].next=head[u];//上一个编号
head[u]=i; //记录现在编号
}
void djc(int u){
dis[u]=;vis[u]=;
for(int i=;i<=n;i++){
int m=INF;
for(int j=;j<=n;j++){
if(!vis[j]&&dis[j]<m){
u=j;
m=dis[j];
}
}
//if(u==qd) break;//没找到路
vis[u]=;//标记已走过,无论有没有找到路
for(int l=head[u];l;l=e[l].next){//当前编号往前找,一直找到0为止,0前再无有效编号
if(dis[e[l].v]>dis[e[l].u]+e[l].w){//更新最短路径
dis[e[l].v]=dis[e[l].u]+e[l].w;
}
} }
}
int main()
{
int m,u,v,x,y,z;
memset(dis,,sizeof dis);
scanf("%d%d%d%d",&n,&m,&qd,&v);
for(int i=;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z,i);
add(y,x,z,i+m);
}
djc(qd);
printf("%d\n",dis[v]);//输出qd->v的最短路径
return ;
}

最短路径—Dijkstra算法的更多相关文章

  1. 网络最短路径Dijkstra算法

    最近在学习算法,看到有人写过的这样一个算法,我决定摘抄过来作为我的学习笔记: <span style="font-size:18px;">/* * File: shor ...

  2. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  3. 最短路径-Dijkstra算法与Floyd算法

    一.最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2   ADCE:3   ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径 ...

  4. 数据结构实验之图论七:驴友计划 ( 最短路径 Dijkstra 算法 )

    数据结构实验之图论七:驴友计划 Time Limit: 1000 ms           Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...

  5. 最短路径——Dijkstra算法以及二叉堆优化(含证明)

    一般最短路径算法习惯性的分为两种:单源最短路径算法和全顶点之间最短路径.前者是计算出从一个点出发,到达所有其余可到达顶点的距离.后者是计算出图中所有点之间的路径距离. 单源最短路径 Dijkstra算 ...

  6. 有向网络(带权的有向图)的最短路径Dijkstra算法

    什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点 ...

  7. Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...

  8. 求两点之间最短路径-Dijkstra算法

     Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...

  9. 单源最短路径——Dijkstra算法学习

    每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好 ...

随机推荐

  1. 【转】C++的拷贝构造函数深度解读,值得一看

    建议看原帖  地址:http://blog.csdn.net/lwbeyond/article/details/6202256 一. 什么是拷贝构造函数 首先对于普通类型的对象来说,它们之间的复制是很 ...

  2. iOS开发~UI布局(二)storyboard中autolayout和size class的使用详解

    一.概要:前一篇初步的描述了size class的概念,那么实际中如何使用呢,下面两个问题是我们一定会遇到的: 1.Xcode6中增加了size class,在storyboard中如何使用? 2.a ...

  3. iOS 公司开发者账号申请

    苹果开发者账号分三种. 个人账号:个人申请用于开发苹果app所使用的账号,仅限于个人使用,申请比较容易,$99. 公司账号:以公司的名义申请的开发者账号,用于公司内部的开发者共用,$99. 企业账号: ...

  4. iOS开发之网络编程--使用NSURLConnection实现大文件断点续传下载+使用输出流代替文件句柄

    前言:本篇讲解,在前篇iOS开发之网络编程--使用NSURLConnection实现大文件断点续传下载的基础上,使用输出流代替文件句柄实现大文件断点续传.    在实际开发中,输入输出流用的比较少,但 ...

  5. Swift 中的函数(下)

    学习来自<极客学院:Swift中的函数> 工具:Xcode6.4 直接上基础的示例代码,多敲多体会就会有收获:百看不如一敲,一敲就会 import Foundation /******** ...

  6. 使用eclipse遇到问题:the-package-collides-with-a-type

    相似问题:http://stackoverflow.com/questions/12236909/the-package-collides-with-a-type

  7. CMD命令名详细大全

    在运行菜单里键入CMD,就可以调出CMD命令窗口,有关某个命令的详细信息,请键入 HELP 命令名 ASSOC 显示或修改文件扩展名关联. AT 计划在计算机上运行的命令和程序.ATTRIB 显示或更 ...

  8. Java学习总结:飘逸的字符串

    Java学习:飘逸的字符串 前言 相信不管我们运用Java语言来开发项目还是进行数据分析处理,都要运用到和字符串相关的处理方法.这个社会处处有着和字符串相关的影子:日志.文档.书籍等.既然我们离不开字 ...

  9. cocos2d-x之xml文件读取初试

    auto doc=new tinyxml2::XMLDocument(); doc->Parse(FileUtils::getInstance()->getStringFromFile(& ...

  10. [分享]一个String工具类,也许你的项目中会用得到

    每次做项目都会遇到字符串的处理,每次都会去写一个StringUtil,完成一些功能. 但其实每次要的功能都差不多: 1.判断类(包括NULL和空串.是否是空白字符串等) 2.默认值 3.去空白(tri ...