hoj3152-Dice 等比数列求和取模
http://acm.hit.edu.cn/hoj/problem/view?id=3152
Dice
My Tags (Edit)
Source :
Time limit : sec Memory limit : M Submitted : , Accepted : You have a dice with M faces, each face contains a distinct number. Your task is to calculate the expected number of tosses until a number facing up for consecutive N times. We assume when we tossing the dice, each face will occur randomly and uniformly.
Input Each test cases contains only one line with two integers M, N. (<=M, N<=)
Output For each test case, display a single line with the answer to the question above, the answer maybe very large, you need to MOD it with . Sample Input Sample Output
题目
题目说是求M面骰子投出N次相同点数所需要投的次数的期望值,看样例可以知道其实是求1+M+M^2+.......+M^(N-1),等比数列求和取模!
这个好像是某次校赛的题,当时我是直接等比数列慢慢加起来,没用等比数列求和公式,就得了。不过现在这题数据好像加强了…不能这样撸啦!而等比数列求和公式又有除法,不好搞取模。于是我也不会了。
然后我找到了一个叫kk303的人写的这个题解:
http://blog.csdn.net/kk303/article/details/9332513
虽然还是不太懂为什么不过得到了超碉的公式:
求等比为k的等比数列之和T[n]..当n为偶数..T[n] = T[n/2] + pow(k,n/2) * T[n/2]
n为奇数...T[n] = T[n/2] + pow(k,n/2) * T[n/2] + 等比数列第n个数的值
比如 1+2+4+8 = (1+2) + 4*(1+2)
1+2+4+8+16 = (1+2) + 4*(1+2) + 16
哇,终于A了,简直屁滚尿流
代码:
#include<stdio.h>
#define MO 1000000007
long long m,n;
long long powmod(long long a,long long b)
{
long long c=;
while(b>)
{
if(b%!=)
c=c*a%MO;
a=a*a%MO;
b=b/;
}
return c;
} long long T(long long n)
{
if(n<=) return ;
long long TN2=T(n/);
if(n%==)
{
return (TN2 + powmod(m,n/) * TN2)%MO;
}
else
{
return (TN2 + powmod(m,n/) * TN2 + powmod(m,n-))%MO;
}
} int main()
{
long long ans,k;
long long i,j,t;
scanf("%lld",&t);
for(i=; i<=t; i++)
{
scanf("%lld%lld",&m,&n);
if(m==) ans=n;
else
{
ans=T(n);
}
printf("%lld\n",ans);
}
return ;
}
hoj3152-Dice 等比数列求和取模的更多相关文章
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- [hdu5226]组合数求和取模(Lucas定理)
题意:给一个矩阵a,a[i][j] = C[i][j](i>=j) or 0(i < j),求(x1,y1),(x2,y2)这个子矩阵里面的所有数的和. 思路:首先问题可以转化为求(0,0 ...
- It's a Mod, Mod, Mod, Mod World Kattis - itsamodmodmodmodworld (等差数列求和取模)
题目链接: D - It's a Mod, Mod, Mod, Mod World Kattis - itsamodmodmodmodworld 具体的每个参数的代表什么直接看题面就好了. AC代码: ...
- CodeForces Round #191 (327C) - Magic Five 等比数列求和的快速幂取模
很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/art ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- 2019河北省大学生程序设计竞赛(重现赛)B 题 -Icebound and Sequence ( 等比数列求和的快速幂取模)
题目链接:https://ac.nowcoder.com/acm/contest/903/B 题意: 给你 q,n,p,求 q1+q2+...+qn 的和 模 p. 思路:一开始不会做,后面查了下发现 ...
- ACM-ICPC 2018 焦作赛区网络预赛G Give Candies(隔板定理 + 小费马定理 + 大数取模,组合数求和)题解
题意:给你n个东西,叫你把n分成任意段,这样的分法有几种(例如3:1 1 1,1 2,2 1,3 :所以3共有4种),n最多有1e5位,答案取模p = 1e9+7 思路:就是往n个东西中间插任意个板子 ...
- 建立复数类Complex,并且进行赋值,求和,取模等操作
#include "pch.h" #include <iostream> #include<cmath> using namespace std; clas ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间求和+点修改+区间取模
D. The Child and Sequence At the children's day, the child came to Picks's house, and messed his h ...
随机推荐
- [CareerCup] 14.4 Templates Java模板
14.4 Explain the difference between templates in C++ and generics in Java. 在Java中,泛式编程Generic Progra ...
- Opencv step by step - 加载视频
刚买了本 "学习Opencv" 这本书,慢慢看起来. 一开始就是加载视频了.当然了,首先你要有个视频 从这里下载了一个: tan@ubuntu:~$ wget http://www ...
- 在茫茫人海中发现相似的你——局部敏感哈希(LSH)
一.引入 在做微博文本挖掘的时候,会发现很多微博是高度相似的,因为大量的微博都是转发其他人的微博,并且没有添加评论,导致很多数据是重复或者高度相似的.这给我们进行数据处理带来很大的困扰,我们得想办法把 ...
- 6.HBase In Action 第一章-HBase简介(1.2 HBase的使用场景和成功案例)
Sometimes the best way to understand a software product is to look at how it's used. The kinds of pr ...
- C#基础之yield与Singleton
1.实例解析yiled的作用 最近参加java笔试题第一次见到yield这个关键字,既然遇见了那肯定要掌握,下面是C#中关于yield关键字的总结.yield这个关键字作用于迭代器块中,其最本质的功能 ...
- mod mono xsp
Mod_Mono 是Apache的一个扩展模块,使得apache支持asp.net. 该模块传递asp.net的请求到一个额外的程序 mod-mono-server(该程序是在安装xsp的时候自动安装 ...
- [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)
题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...
- java线程技术6_线程的挂起和唤醒[转]
转自:http://blog.chinaunix.net/uid-122937-id-215913.html 1. 线程的挂起和唤醒 挂起实际上是让线程进入“非可执行”状态下,在这个状态下C ...
- 小菜鸟学 Spring-bean scope (一)
this information below just for study record of mine. 默认情况下:Spring 创建singleton bean 以便于错误能够被发现. 延迟加载 ...
- web前端开发常用的10个高端CSS UI开源框架
web前端开发常用的10个高端CSS UI开源框架 随着人们对体验的极致追求,web页面设计也面临着新的挑战,不仅需要更人性化的设计理念,还需要设计出更酷炫的页面.作为web前端开发人员,运用开源 ...