POJ 2777 Count Color(线段树之成段更新)
Count Color
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 33311
Accepted: 10058
Description
Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem.
There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board:
1. "C A B C" Color the board from segment A to segment B with color C.
2. "P A B" Output the number of different colors painted between segment A and segment B (including).
In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your.
Input
First line of input contains L (1 <= L <= 100000), T (1 <= T <= 30) and O (1 <= O <= 100000). Here O denotes the number of operations. Following O lines, each contains "C A B C" or "P A B" (here A, B, C are integers, and A may be larger than B) as an operation defined previously.
Output
Ouput results of the output operation in order, each line contains a number.
Sample Input
2 2 4
C 1 1 2
P 1 2
C 2 2 2
P 1 2
Sample Output
2
1
[Submit] [Go Back] [Status] [Discuss]
::会线段树的很容易知道怎么做这道题,这道题关键要解决重复计算的颜色,我用have[]来表示该颜色是否已经计算过
1: #include <iostream>
2: #include <cstdio>
3: #include <cstring>
4: #include <cmath>
5: #include <algorithm>
6: using namespace std;
7: typedef long long ll;
8: #define lson l,m,rt<<1
9: #define rson m+1,r,rt<<1|1
10: const int N=100000;
11: int col[N<<2],t,sum;
12: bool have[50];
13:
14: void Down(int rt)
15: {
16: if(col[rt]){
17: col[rt<<1]=col[rt<<1|1]=col[rt];
18: col[rt]=0;
19: }
20: }
21:
22: void build(int l,int r,int rt)
23: {
24: col[rt]=1;
25: if(l==r) return;
26: int m=(l+r)>>1;
27: build(lson);
28: build(rson);
29: }
30:
31: void update(int L,int R,int c,int l,int r,int rt)
32: {
33: if(L<=l&&R>=r){
34: col[rt]=c;
35: return;
36: }
37: Down(rt);
38: int m=(l+r)>>1;
39: if(L<=m) update(L,R,c,lson);
40: if(R>m) update(L,R,c,rson);
41: }
42:
43: void query(int L,int R,int l,int r,int rt)
44: {
45: if(sum==t) return;
46: if(col[rt]) {
47: if(!have[col[rt]]){
48: have[col[rt]]=true;
49: sum++;
50: }
51: return;
52: }
53: Down(rt);
54: int m=(l+r)>>1;
55: if(L<=m) query(L,R,lson);
56: if(R>m) query(L,R,rson);
57: }
58:
59:
60: int main()
61: {
62: int len,n;
63: while(scanf("%d%d%d",&len,&t,&n)>0)
64: {
65: build(1,len,1);
66: for(int i=0; i<n; i++)
67: {
68: char s[2];
69: int L,R;
70: scanf("%s%d%d",s,&L,&R);
71: if(L>R) swap(L,R);//个人觉得如果题目没有说明L<=R,那么一定要加这一句,以免出错
72: if(s[0]=='C'){
73: int c;
74: scanf("%d",&c);
75: update(L,R,c,1,len,1);
76: }
77: else{
78: memset(have,false,sizeof(have));
79: sum=0;
80: query(L,R,1,len,1);
81: printf("%d\n",sum);
82: }
83: }
84: }
85: return 0;
86: }
POJ 2777 Count Color(线段树之成段更新)的更多相关文章
- POJ 2777 Count Color (线段树成段更新+二进制思维)
题目链接:http://poj.org/problem?id=2777 题意是有L个单位长的画板,T种颜色,O个操作.画板初始化为颜色1.操作C讲l到r单位之间的颜色变为c,操作P查询l到r单位之间的 ...
- poj 2777 Count Color(线段树区区+染色问题)
题目链接: poj 2777 Count Color 题目大意: 给出一块长度为n的板,区间范围[1,n],和m种染料 k次操作,C a b c 把区间[a,b]涂为c色,P a b 查 ...
- poj 2777 Count Color(线段树)
题目地址:http://poj.org/problem?id=2777 Count Color Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
- poj 2777 Count Color - 线段树 - 位运算优化
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 42472 Accepted: 12850 Description Cho ...
- poj 2777 Count Color(线段树、状态压缩、位运算)
Count Color Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 38921 Accepted: 11696 Des ...
- Codeforces295A - Greg and Array(线段树的成段更新)
题目大意 给定一个序列a[1],a[2]--a[n] 接下来给出m种操作,每种操作是以下形式的: l r d 表示把区间[l,r]内的每一个数都加上一个值d 之后有k个操作,每个操作是以下形式的: x ...
- hdu 1698 Just a Hook(线段树之 成段更新)
Just a Hook Time Limit: ...
- POJ P2777 Count Color——线段树状态压缩
Description Chosen Problem Solving and Program design as an optional course, you are required to sol ...
- POJ 3468 A Simple Problem with Integers //线段树的成段更新
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 59046 ...
随机推荐
- weblogic 12C 数据源配置出错的解决办法
驱动程序类名称: 11G 10.3.6与12G数据源配置有很大区别,整个一天才搞明白. 如有疑问可留言:http://www.cnblogs.com/endv/p/4110798.html 配 ...
- 《Node.js+MongoDB+AngularJS Web开发》读书笔记及联想
总体介绍 <Node.js+MongoDB+AngularJS Web开发>,于2015年6月出版,是一本翻译过来的书,原书名为<Node.js,MongoDB and Angula ...
- (旧)子数涵数·Flash——影片剪辑的事件操作
一.综述 1.概念:影片剪辑的事件操作,就是onClipEvent命令,就如同在按钮上使用的on命令. 2.方法:onClipEnvent(参数){命令} 3.参数:onClipEnvent有许多的参 ...
- 常见的几种RuntimeException
一般面试中java Exception(runtimeException )是必会被问到的问题 常见的异常列出四五种,是基本要求.更多的....需要注意积累了 常见的几种如下: NullPoi ...
- velocity merge作为工具类从web上下文和jar加载模板的两种常见情形
很多时候,处于各种便利性或折衷或者通用性亦或是限制的原因,会借助于模板生成结果,在此介绍两种使用velocity merge的情形,第一种是和spring mvc一样,将模板放在velocityCon ...
- 总结一下SQL的全局变量
SQL Server 2008中的全局变量及其用法 T-SQL程序中的变量分为全局变量和局部变量两类,全局变量是由SQL Server系统定义和使用的变量.DBA和用户可以使用全局变量的值,但不能自己 ...
- C++模板元编程
ABC
- 一个H5的3D滑动组件实现(兼容2D模式)
起由 原始需求来源于一个项目的某个功能,要求实现3D图片轮播效果,而已有的组件大多是普通的2D图片轮播,于是重新造了一个轮子,实现了一个既支持2D,又支持3D的滑动.轮播组件. 实现思路 刚一开始肯定 ...
- 同源策略和JSONP(概念性)
同源策略 浏览器有一个很重要的概念——同源策略(Same-Origin Policy). 所谓同源是指,域名,协议,端口相同.不同源的客户端脚本(javascript.ActionScript)在没明 ...
- Atitit。 工作流引擎的发展趋势
Atitit. 工作流引擎的发展趋势 1.1. 图灵完备1 1.2. 图形化与文本化1 1.3. Jit1 1.4. Dsl化2 1.5. Oo2 1.6. 托管与本地代码的互操作2 1.7. 大型 ...