题目描述

对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M。

例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个自然数段为M=10000的一个解。

输入输出格式

输入格式:

包含一个整数的单独一行给出M的值(10 <= M <= 2,000,000)。

输出格式:

每行两个自然数,给出一个满足条件的连续自然数段中的第一个数和最后一个数,两数之间用一个空格隔开,所有输出行的第一个按从小到大的升序排列,对于给定的输入数据,保证至少有一个解。

输入输出样例

输入样例#1:

combo.in
10000
输出样例#1:

combo.out
18 142
297 328
388 412
1998 2002

代码

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int m,x,y;
bool can(double x)//判断是否为整数,就不讲了,应该能看懂
{
if((int)x==x) return true;
else return false;
}
int main()
{
scanf("%d",&m);
double h;
for(int i=;i<=m/;i++) //枚举x
{
h=sqrt(*m+(i-0.5)*(i-0.5))-0.5; //这就是推出的公式
if(can(h)) printf("%d %d\n",i,(int)h);
}
return ;
}

抄来的直接看题解就好

连题解也是转载的QAQ

给出M,有等差数列求和公式得:设区间[x,y]上M=(x+y)*(x-y+1)/2 顺便提一下 x-y+1 为自然数个数

化简得到 y方-y=x方+x-2*M;进一步两边同时加一个1/4 可得 (y-1/2)方=(x+1/2)方-2*M;

于是两边开方 有y=根号下((x+1/2)方-2*M)+1/2;

那么我们就枚举x i=1;i<=M/2;i++ 因为至少是两个数相加所以枚举到一半即可;

可以算出每一个x对应的y 只需判断其是否为整数 如果是那么合题输出一组;

洛谷 P1147 连续自然数和 Label:等差数列的更多相关文章

  1. 洛谷 P1147 连续自然数和

    洛谷 P1147 连续自然数和 看到dalao们的各种高深方法,本蒟蒻一个都没看懂... 于是,我来发一篇蒟蒻友好型的简单题解 #include<bits/stdc++.h> using ...

  2. 洛谷P1147 连续自然数和 [2017年6月计划 数论01]

    P1147 连续自然数和 题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以 ...

  3. 洛谷——P1147 连续自然数和

    P1147 连续自然数和 题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以 ...

  4. 洛谷 P1147 连续自然数和 题解

    P1147 连续自然数和 题目描述 对一个给定的自然数MM,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为MM. 例子:1998+1999+2000+2001+2002 = 100001 ...

  5. 洛谷P1147 连续自然数和 题解 枚举

    题目链接:https://www.luogu.com.cn/problem/P1147 题目大意: 给你一个数 \(M\) ,求有多少对连续自然数对之和为 \(M\),输出这列连续自然数对的首项和末项 ...

  6. 洛谷P1147 连续自然数和【二分】

    题目:https://www.luogu.org/problemnew/show/P1147 题意: 给定一个数m,问有多少个数对$(i,j)$,使得$i$到$j$区间的所有整数之和为m.输出所有的解 ...

  7. 洛谷P1147 连续自然数和

    https://www.luogu.org/problem/P1147 #include<bits/stdc++.h> using namespace std; int main(){ i ...

  8. 洛谷 P1147 连续自然数和 (滑动窗口)

    维护一个滑动窗口即可 注意不能有m到m的区间,因为区间长度要大于1 #include<cstdio> #define _for(i, a, b) for(int i = (a); i &l ...

  9. P1147连续自然数和

    洛谷1147 连续自然数和 题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所 ...

随机推荐

  1. 题目1006:ZOJ问题

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:13212 解决:2214 题目描述: 对给定的字符串(只包含'z','o','j'三种字符),判断他是否能AC. 是否AC的规则如下:1. ...

  2. HDOj 1010 DFS优化

    #include<cstdio> #include<cstring> ]={,,,-}; ]={,,-,}; ][]; int x1,y1,x2,y2; int step; i ...

  3. HDOJ 1075

    字典树 9890974 2013-12-25 15:31:06 Accepted 1075 468MS 59832K 1342 B G++ 泽泽 #include<stdio.h> #in ...

  4. python-twisted系列(1)

    前言: 这不是一个入门教程.而是知识点的梳理. 开胃图: 这是一个TCP server的“交互图”. reactor 它是Twisted事件处理的核心.包括一些处理网络通讯,线程和事件分派的接口. 一 ...

  5. 常州Day4题解

    1. 高精度 这题略水,字符串可过,还不加压位等,操作只有BitShift和add/sub,不过编程复杂度有些高.(输出都是二进制我能说些什么...) 2. N皇后问题 (警告! 不是平时你见到的N皇 ...

  6. Thinkphp中eq,neq,gt,lt等表达式缩写

    eq 等于  equalneq 不等于gt 大于   greater thanegt 大于等于lt 小于     less thanelt 小于等于like LIKEbetween BETWEENno ...

  7. jQuery 效果函数

    jQuery 效果函数 方法 描述 animate() 对被选元素应用“自定义”的动画 clearQueue() 对被选元素移除所有排队的函数(仍未运行的) delay() 对被选元素的所有排队函数( ...

  8. 14.约瑟夫环问题[JosephusProblem]

    [题目] n个数字(0,1,…,n-1)形成一个圆圈,从数字0开始,每次从这个圆圈中删除第m个数字(第一个为当前数字本身,第二个为当前数字的下一个数字).当一个数字删除后,从被删除数字的下一个继续删除 ...

  9. codeforces 483C.Diverse Permutation 解题报告

    题目链接:http://codeforces.com/problemset/problem/483/C 题目意思:给出 n 和 k,要求输出一个含有 n 个数的排列 p1, p2, ...,pn,使得 ...

  10. hdu 1879 继续畅通工程 解题报告

    题目链接:http://code.hdu.edu.cn/showproblem.php?pid=1879 这条题目我的做法与解决Constructing Roads的解法是相同的. 0 表示没有连通: ...