【APIO 2018】铁人两项(圆方树)
题意大概是,求有多少三元组$(s,c,f)(s \neq c, c \neq f, s \neq f)$,满足从$s$到$f$有一条简单路径经过$c$。
得到结论:
- 点双中任意互不相同的三个点,必定存在一条简单路径依次经过这三个点。
- 显然,割点只能经过一次。
建出一棵圆方树,圆点的权值为$-1$,方点的权值为该点双中点的个数,那任意两个圆点之间可以作为它们中转点的个数就是它们在圆方树上路径的点权和。
具体来讲就是割点上只能经过一次,圆点设成$-1$是为了去重方便。
以前只写过点双缩树,这里写圆方树更方便,权且将这道题作为学习的例题吧。
建圆方树只要在Tarjan上稍作修改,这里给出建树的例子:
void Tarjan(int x, int fa) {
sta[++top] = x; in[x] = -;
dfn[x] = low[x] = ++_clock;
for (int i = las[x]; i; i = pre[i]) {
if (to[i] == fa) continue;
if (dfn[to[i]]) {
low[x] = std::min(low[x], dfn[to[i]]);
} else {
Tarjan(to[i], x);
low[x] = std::min(low[x], low[to[i]]);
if (dfn[x] <= low[to[i]]) {
xtr[x].push_back(++c_n); ++in[c_n];
for (int t = -; t != to[i]; ) {
t = sta[top--];
xtr[c_n].push_back(t); ++in[c_n];
}
}
}
}
}
(注:xtr为圆方树,in < 0代表圆点,否则代表了该方点中点双里点的个数)
之后这个题就好做了,统计的是所有圆点点对间路径长度的总和。
#include <cstdio>
#include <vector>
#include <iostream> typedef long long LL;
const int N = ; int n, m;
int dfn[N], low[N], in[N], siz[N], sta[N], top, _clock, c_n;
std::vector<int> xtr[N];
LL ans, sum[N]; int yun = , las[N], to[N << ], pre[N << ];
inline void Add(int a, int b) {
to[++yun] = b; pre[yun] = las[a]; las[a] = yun;
} void Tarjan(int x, int fa) {
sta[++top] = x; in[x] = -;
dfn[x] = low[x] = ++_clock;
for (int i = las[x]; i; i = pre[i]) {
if (to[i] == fa) continue;
if (dfn[to[i]]) {
low[x] = std::min(low[x], dfn[to[i]]);
} else {
Tarjan(to[i], x);
low[x] = std::min(low[x], low[to[i]]);
if (dfn[x] <= low[to[i]]) {
xtr[x].push_back(++c_n); ++in[c_n];
for (int t = -; t != to[i]; ) {
t = sta[top--];
xtr[c_n].push_back(t); ++in[c_n];
}
}
}
}
} void Dfs(int x) {
if (in[x] < ) siz[x] = , sum[x] = in[x];
for (int i = ; i < (int)xtr[x].size(); ++i) {
int v = xtr[x][i];
Dfs(v);
siz[x] += siz[v];
sum[x] += (LL) siz[v] * in[x] + sum[v];
}
}
void Calc(int x) {
if (in[x] < ) ans += sum[x] - in[x];
LL cnt = ;
for (int i = ; i < (int)xtr[x].size(); ++i) {
int v = xtr[x][i];
ans += (LL) sum[v] * (siz[x] - (in[x] < ) - siz[v]);
cnt += (LL) siz[v] * (siz[x] - (in[x] < ) - siz[v]);
}
ans += (LL) cnt / * in[x];
for (int i = ; i < (int)xtr[x].size(); ++i) {
int v = xtr[x][i];
Calc(v);
}
} int main() {
scanf("%d%d", &n, &m);
c_n = n;
for (int i = , x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
Add(x, y); Add(y, x);
}
for (int i = ; i <= n; ++i) {
if (!dfn[i]) {
Tarjan(i, );
Dfs(i);
Calc(i);
}
}
printf("%lld\n", ans * ); return ;
}
$\bigodot$技巧&套路:
- 圆方树的构建,圆方树上的统计技巧,可以用圆点的权值设成$-1$来去重。
【APIO 2018】铁人两项(圆方树)的更多相关文章
- [APIO2018] Duathlon 铁人两项 圆方树,DP
[APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- 洛谷P4630 铁人两项--圆方树
一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn ...
- 【Luogu4630】【APIO2018】 Duathlon 铁人两项 (圆方树)
Description 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的 ...
- LOJ 2587 「APIO2018」铁人两项——圆方树
题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...
- loj2587 「APIO2018」铁人两项[圆方树+树形DP]
主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...
- [BZOJ5463][APIO2018]铁人两项(圆方树DP)
题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...
- 解题:APIO 2018 铁人两项
题面 建立圆方树,考虑所有路径,发现路径上原来的点双(现在的方点)里的点都可以做中间点.但是路径上被方点夹着的圆点被计重了,要扣掉:枚举的两个端点也被算进去了,要扣掉.所以直接将方点权值设为点双大小, ...
随机推荐
- 客户端传入数据的校验-RestController进阶
使用Hibernate Validator进行数据校验 Bean Validation注解(需要加入相关依赖,在SpringBoot中可以直接使用,SpringBoot会帮我们直接加入) @Null ...
- SQL Server上DBLINK的创建,其实很简单!(上)
今天给大家来分享一下跨服务器操作数据库,还是以SQL Server的管理工具(SSMS)为平台进行操作. 什么是跨服务器操作? 跨服务器操作就是可以在本地连接到远程服务器上的数据库,可以在对方的数据库 ...
- Netty源码分析第2章(NioEventLoop)---->第1节: NioEventLoopGroup之创建线程执行器
Netty源码分析第二章: NioEventLoop 概述: 通过上一章的学习, 我们了解了Server启动的大致流程, 有很多组件与模块并没有细讲, 从这个章开始, 我们开始详细剖析netty的各个 ...
- 简介make命令和makefile文件
一.为什么要用到 make 命令和 makefile 文件 在 Linux 下编写一个程序,每次编译都需要在命令行一行一行的敲命令.如果是一个很小的程序还好说,命令不怎的复杂,编译速度也挺快,但是对于 ...
- SQL ser 进行表中的插入操作时,变量字段名,导致报错时解决办法 :动态SQL
标题不能描述的很清楚,下面具体说所我要描述的问题,和解决的办法. 作为SQL小白一枚,近日在写一段代码,代码如下: 报错显示 变量@vv附近错误. 后来经过了解,原来是因为,这样需要使用 动态SQL去 ...
- 教你用Python解决非平衡数据问题(附代码)
本文为你分享数据挖掘中常见的非平衡数据的处理,内容涉及到非平衡数据的解决方案和原理,以及如何使用Python这个强大的工具实现平衡的转换. 后台回复“不平衡”获取数据及代码~ 前言 好久没有更新自己写 ...
- 20162316刘诚昊 Java Queue的测试
交慢了一步..
- 【动态规划】POJ-3176
一.题目 Description The cows don't use actual bowling balls when they go bowling. They each take a numb ...
- WinForm中DataGridView的快速查找及将指定行显示到第一行
/// <summary> /// 快速在已绑定的列表查询车辆 /// </summary> /// <param name="sender"> ...
- .Net用字符串拼接实现表格数据相同时合并单元格
前言 最近在做项目通过GridView或Repeater绑定数据,如果两行或若干行某列值相同,需要进行合并单元格,但是实现过程中想到了字符串拼接,于是就没用绑定数据控件,而是用了html结合字符串实现 ...