Description

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。

Input

输入的第一行包含两个正整数,分别表示N和M。

Output

输出一个正整数,表示表格中所有数的和mod 20101009的值。

Sample Input

4 5

Sample Output

122

HINT

100%的数据满足N, M ≤ 10^7。

Solution

莫比乌斯反演,膜拜PoPoQQQ

这题题意还是很清楚的,话不多说,推式子吧

哦,我之前\(too\ young\ too\ simple\)了,分块的时候判上界每次都会取min,结果慢了很多,这次保证了N比M小,所以在推式子的时候不要疑惑

\[ans=\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^N\sum_{j=1}^M\frac{ij}{gcd(i,j)}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^Nd\sum_{i=1}^{\lfloor \frac{N}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{M}{d} \rfloor}[gcd(i,j)=1]ij\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

这里解释一下,为什么枚举公约数,后面还要是一个\([gcd(i,j)=1]\):因为当\(i\),\(j\)除了\(d\)以外还有公因子\(k\)的话,那么\(gcd(i,j)=dk\),而不是\(d\),这个式子就错了

然后我们设\(g(x,y)=\sum_{i=1}^{x}\sum_{j=1}^{y}[gcd(i,j)=1]ij\),\(s(x,y)=\sum_{i=1}^{x}\sum_{j=1}^{y}ij=\frac{(x+1)x}{2}\frac{(y+1)y}{2}\)

那么

\[ans=\sum_{d=1}^Nd\cdot g(\lfloor \frac{N}{d} \rfloor,\lfloor \frac{M}{d} \rfloor)
\]

假设我们知道\(g(x,y)\)的值,那么算这个式子,整除分块就可以了吧

那么我们接下来的问题就是算\(g(x,y)\)

对于\(g(x,y)\),这里的求法完全是单独的,用莫比乌斯反演。

设\(f(n)=\sum_{i=1}^{x}\sum_{j=1}^{y}[gcd(i,j)=n]ij\)

设\(F(n)=\sum_{i=1}^{x}\sum_{j=1}^{y}[n|gcd(i,j)]ij\)

然后我们来推\(F(n)\)

\(F(n)=\sum_{i=1}^{x}\sum_{j=1}^{y}[n|gcd(i,j)]ij\)

\(\ \ \ \ \ \ \ \ \ \ =\sum_{ni=1}^{x}\sum_{nj=1}^{y}[n|gcd(ni,nj)]ni\cdot nj\)

\(\ \ \ \ \ \ \ \ \ \ =\sum_{i=1}^{\lfloor \frac{x}{n} \rfloor}\sum_{j=1}^{\lfloor \frac{y}{n} \rfloor}ni \cdot nj\)

\(\ \ \ \ \ \ \ \ \ \ =n^2\sum_{i=1}^{\lfloor \frac{x}{n} \rfloor}\sum_{j=1}^{\lfloor \frac{y}{n} \rfloor}ij\)

\(\ \ \ \ \ \ \ \ \ \ =n^2\cdot s(\lfloor \frac{x}{n} \rfloor,\lfloor \frac{y}{n} \rfloor)\)

反演得\(f(n)\)

\(f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)\)

\(\ \ \ \ \ \ \ \ \ =\sum_{d=1}^{N}\mu(d)F(nd)\)

\(\ \ \ \ \ \ \ \ \ =\sum_{d=1}^{N}\mu(d)\cdot n^2d^2\cdot s(\lfloor \frac{x}{nd} \rfloor,\lfloor \frac{y}{nd} \rfloor)\)

那么\(g(x,y)=f(1)=\sum_{d=1}^{N}\mu(d)\cdot d^2\cdot s(\lfloor \frac{x}{d} \rfloor,\lfloor \frac{y}{d} \rfloor)\)

于是,又可以整除分块了。。。

预处理\(\mu(d)\cdot d^2\)前缀和,分块求\(g(x,y)\)

所以这个题目的算法就是一个大整除分块加一个小整除分块,最后复杂度两个根号乘起来正好一个\(O(N)\)

#include<bits/stdc++.h>
#define ll long long
const int MAXN=10000000+10,Mod=20101009;
int N,M,prime[MAXN],cnt,mu[MAXN],vis[MAXN];
ll res,two,mus[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline ll qexp(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%Mod;
a=a*a%Mod;
b>>=1;
}
return res;
}
inline void init()
{
two=qexp(2,Mod-2);
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
mu[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
for(register int i=1;i<MAXN;++i)mus[i]=(mus[i-1]+(ll)mu[i]*(ll)i*(ll)i)%Mod;
}
inline ll s(int x,int y)
{
return (ll)(x+1)*(ll)x%Mod*two%Mod*(ll)(y+1)%Mod*(ll)y%Mod*two%Mod;
}
inline ll g(int x,int y)
{
ll ans=0;
if(x>y)std::swap(x,y);
for(register int i=1;;)
{
if(i>x)break;
int j=min(x/(x/i),y/(y/i));
(ans+=(mus[j]-mus[i-1]+Mod)%Mod*s(x/i,y/i)%Mod)%=Mod;
i=j+1;
}
return ans;
}
int main()
{
read(N);read(M);
init();
if(N>M)std::swap(N,M);
for(register int i=1;;)
{
if(i>N)break;
int j=min(N/(N/i),M/(M/i));
(res+=(ll)(i+j)*(ll)(j-i+1)%Mod*two%Mod*g(N/i,M/i)%Mod)%=Mod;
i=j+1;
}
write(res,'\n');
return 0;
}

【刷题】BZOJ 2154 Crash的数字表格的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  2. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  3. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  4. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  5. Bzoj 2154: Crash的数字表格(积性函数)

    2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...

  6. bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)

    Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...

  7. ●BZOJ 2154 Crash的数字表格

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...

  8. BZOJ 2154 Crash的数字表格

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2154 题意: 思路: i64 mou[N]; void init(int N){    ...

  9. BZOJ 2154 Crash的数字表格 ——莫比乌斯反演

    求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...

随机推荐

  1. adb server version (31) doesn't match this client (39) 解决方案

    adb server version (31) doesn't match this client (39) 问题的解决方案, 在cmd中输入adb nodaemon server -a后解决了, 记 ...

  2. Gitlab 403 forbidden 并发引起IP被封

    问题 在工作中自搭建的Gitlab.但今天打开页面的时候显示的是空白页面,上面还有一次文本Forbidden. 原因 Gitlab使用rack_attack做了并发访问的限制. 解决方案 将Gitla ...

  3. mysql 数据库备份和恢复

    物理备份对比逻辑备份 物理备份是指直接复制包含数据的文件夹和文件.这种类型的备份适用于大数据量且非常重要,遇到问题需要快速回复的数据库. 逻辑备份保存能够代表数据库信息的逻辑结构(CREATE DAT ...

  4. Hyperledger Fabric 账本结构解析

    前言 现在很多人都在从事区块链方面的研究,作者也一直在基于Hyperledger Fabric做一些开发工作.为了方便后来人更快的入门,本着“开源”的精神,在本文中向大家讲解一下Hyperledger ...

  5. openstack系列文章(二)

    学习openstack的系列文章-keystone openstack 架构 Keystone 基本概念 Keystone 工作流程 Keystone Troubleshooting 1.  open ...

  6. 深度学习中数据的augmentation

    为了提高模型的泛化能力,同时也为了增大数据集,我们往往需要对数据进行augmentation,在这篇博客中,将总结一下可以对数据进行的augmentation. 1.颜色数据增强,对图像亮度.饱和度. ...

  7. linux go环境安装

    方法一 这次将源码包安装的目录是是/root下. 1.官网下载源码包. 官网链接:https://golang.org/dl/   wget https://storage.googleapis.co ...

  8. 微软职位内部推荐-Software Engineer II_VS

    微软近期Open的职位: Job Title: Software Engineer II Division: Visual Studio China – Developer Division Work ...

  9. sync命令详解

    转:https://blog.csdn.net/everything1209/article/details/50423679 1.谁和谁同步? 2.为什么要同步?复制移动的过程不是同步的吗,都发生了 ...

  10. redis高级应用(集群搭建、集群分区原理、集群操作)

    文章主目录 Redis集群简介 Redis集群搭建 Redis集群分区原理 集群操作 参考文档 本文是redis学习系列的第四篇,前面我们学习了redis的数据结构和一些高级特性,点击下面链接可回看 ...