(一)线性递减
function [xm,fv] = PSO_lin(fitness,N,c1,c2,wmax,wmin,M,D)
format long;
% fitness学习函数
% c1学习因子1
% c2学习因子2
% wmax惯性权重最大值
% wmin惯性权重最值小
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
% xm目标函数取最小值时的自变量
% fv目标函数最小值
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
for j=1:D
x(i,j)=randn;
v(i,j)=randn;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%%%
for i=1:N
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
pg = x(N,:); %Pg为全局最优
for i=1:(N-1)
if fitness(x(i,:))
pg=x(i,:);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%主循环,按照公式依次迭代%%%%%%%%%%%%%%%%%%%%%%%%%%
for t=1:M
for i=1:N
w = wmax - (t-1)*(wmax-wmin)/(M-1);
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)
pg=y(i,:);
end
end
Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
(二)自适应
function [xm,fv] = PSO_adaptation(fitness,N,c1,c2,wmax,wmin,M,D)
format long;
% fitness学习函数
% c1学习因子1
% c2学习因子2
% w惯性权重
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
% xm目标函数取最小值时的自变量
% fv目标函数最小值
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
for j=1:D
x(i,j)=randn;
v(i,j)=randn;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%先计算各个粒子的适应度%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
pg=x(N,:); %Pg表示全局最优
for i=1:(N-1)
if fitness(x(i,:))
pg=x(i,:);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%进入主要循环%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for t=1:M
for j=1:N
fv(j) = fitness(x(j,:));
end
fvag = sum(fv)/N;
fmin = min(fv);
for i=1:N
if fv(i) <= fvag
w = wmin + (fv(i)-fmin)*(wmax-wmin)/(fvag-fmin);
else
w = wmax;
end
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)
pg=y(i,:);
end
end
end
xm = pg'; %目标函数取最小值时的自变量
fv = fitness(pg); %目标函数最小值
(三)增加学习因子
% D搜索空间维数
%%%%%%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
for j=1:D
x(i,j)=randn; %初始化位置
v(i,j)=randn; %初始化速度
end
end
%%%%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%
for i=1:N
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
pg = x(N,:); %Pg为全局最优
for i=1:(N-1)
if fitness(x(i,:))
pg=x(i,:);
end
end
%%%%%主循环,按照公式依次迭代%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T = - fitness(pg)/log(0.2);
for t=1:M
groupFit = fitness(pg);
for i=1:N
Tfit(i) = exp( - (p(i) - groupFit)/T);
end
SumTfit = sum(Tfit);
Tfit = Tfit/SumTfit;
pBet = rand();
for i=1:N
ComFit(i) = sum(Tfit(1:i));
if pBet <= ComFit(i)
pg_plus = x(i,:);
break;
end
end
C = c1 + c2;
ksi = 2/abs( 2 - C - sqrt(C^2 - 4*C));
for i=1:N
v(i,:)=ksi*(v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg_plus-x(i,:)));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)
pg=y(i,:);
end
end
T = T * lamda;
Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
(四)随机权重
function [xm,fv] = PSO_rand(fitness,N,c1,c2,wmax,wmin,rande,M,D)
format long;
% fitness学习函数
% c1学习因子1
% c2学习因子2
% w惯性权重
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
% xm目标函数取最小值时的自变量
% fv目标函数最小值
% rande随机权重方差
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
for j=1:D
x(i,j)=randn;
v(i,j)=randn;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%%%
for i=1:N
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
pg = x(N,:); %Pg为全局最优
for i=1:(N-1)
if fitness(x(i,:))
pg=x(i,:);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%进入主要循环,按照公式依次迭代%%%%%%%%%%%%%%%%%%%%
for t=1:M
for i=1:N
miu = wmin + (wmax - wmin)*rand();
w = miu + rande*randn();
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)
pg=y(i,:);
end
end
Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
以上四种w的改进方法各有千秋;请读者以自身要求去选择相应的方法,除此之外,还有很多其它对于w的改进。不过,现在比较主流的给c1,c2,w建立一个相应的关系,通过c1或者c2的值来控制w的变化。
- C语言实现粒子群算法(PSO)一
最近在温习C语言,看的书是<C primer Plus>,忽然想起来以前在参加数学建模的时候,用过的一些智能算法,比如遗传算法.粒子群算法.蚁群算法等等.当时是使用MATLAB来实现的,而 ...
- 算法(三)粒子群算法PSO的介绍
一.引言 在讲算法之前,先看两个例子: 例子一:背包问题,一个书包,一堆物品,每个物品都有自己的价值和体积,装满书包,使得装的物品价值最大. 例子二:投资问题,n个项目,第i个项目投资为ci 收益为p ...
- 【比较】粒子群算法PSO 和 遗传算法GA 的相同点和不同点
目录 PSO和GA的相同点 PSO和GA不同点 粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解. PSO和G ...
- 粒子群算法-PSO
粒子群优化算法 1. 背景知识 1995年美国社会心理学家Kennedy和电气工程师Eberhart共同提出粒子群优化算法(Particle Swarm Optimization, PSO).PSO算 ...
- C语言实现粒子群算法(PSO)二
上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...
- 粒子群算法(PSO)
这几天看书的时候看到一个算法,叫粒子群算法,这个算法挺有意思的,下面说说我个人的理解: 粒子群算法(PSO)是一种进化算法,是一种求得近似最优解的算法,这种算法的时间复杂度可能会达到O(n!),得到的 ...
- 粒子群算法(PSO)算法解析(简略版)
粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...
- 粒子群算法 Particle Swarm Optimization, PSO(转贴收藏)
粒子群算法(1)----粒子群算法简介 http://blog.csdn.net/niuyongjie/article/details/1569671 粒子群算法(2)----标准的粒子群算法 htt ...
- 基于粒子群算法求解求解TSP问题(JAVA)
一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选 ...
随机推荐
- UVa 1412 - Fund Management(状压DP + 预处理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 1060. [ZJOI2007]时态同步【树形DP】
Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数 字1,2,3….进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路 ...
- JDBC 使用common-dbutiles
一:第三方jar mysql-connector-java-5.1.45-bin.jar,需要关注的核心类: 1.DbUtils----操作数据库的连接注册和释放. 2:.QueryRunner--- ...
- P1169 [ZJOI2007]棋盘制作
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...
- HDU 1698 Just a Hook(线段树模板之区间替换更新,区间求和查询)
Just a Hook Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- cloudstack 添加新网卡使其能上网
由于虚拟机使用了默认的网络套餐,是不能上网的.现在的需求是使其能上网. 操作步骤: 1.添加一个在能上网的网络里的网卡,使其成为默认网卡 2.复制网卡配置文件,修改网卡名称等,重启network(可能 ...
- (转)CentOS 7 —— /etc/rc.local 开机不执行 - 解决方法
chmod +x /etc/rc.d/rc.localsystemctl enable rc-local.service Note: rc.local is obsolete. ----------- ...
- 50道Java线程面试题(转载)
1) 什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速.比如,如果一个线程完成 ...
- Yii2 查询条件
Model::find() 字符串格式,例如:'status=1' 哈希格式,例如: ['status' => 1, 'type' => 2] 操作符格式,例如:['like', 'nam ...
- 一、Delphi中Cxgrid表格滚动条粗细设置
1.Delphi VCL新版本的Cxgrid滚动条默认是触屏模式(如下图),很细的滚动条,在电脑版显示非常不方便. 2.如果需要改成传统的滚动条模式,需要设置一下LookAndFeel里面的Scrol ...