(一)线性递减
function [xm,fv] = PSO_lin(fitness,N,c1,c2,wmax,wmin,M,D)
format long;
% fitness学习函数
% c1学习因子1
% c2学习因子2
% wmax惯性权重最大值
% wmin惯性权重最值小
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
% xm目标函数取最小值时的自变量
% fv目标函数最小值
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
    for j=1:D
        x(i,j)=randn;  
        v(i,j)=randn;  
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%%%
for i=1:N
    p(i)=fitness(x(i,:));
    y(i,:)=x(i,:);
end
pg = x(N,:);             %Pg为全局最优
for i=1:(N-1)
    if fitness(x(i,:))
        pg=x(i,:);
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%主循环,按照公式依次迭代%%%%%%%%%%%%%%%%%%%%%%%%%%
for t=1:M
    for i=1:N
        w = wmax - (t-1)*(wmax-wmin)/(M-1);
        v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
        x(i,:)=x(i,:)+v(i,:);
        if fitness(x(i,:))
            p(i)=fitness(x(i,:));
            y(i,:)=x(i,:);
        end
        if p(i)
            pg=y(i,:);
        end
    end
    Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
(二)自适应
function [xm,fv] = PSO_adaptation(fitness,N,c1,c2,wmax,wmin,M,D)
format long;
% fitness学习函数
% c1学习因子1
% c2学习因子2
% w惯性权重
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
% xm目标函数取最小值时的自变量
% fv目标函数最小值
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
    for j=1:D
        x(i,j)=randn;  
        v(i,j)=randn; 
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%先计算各个粒子的适应度%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
    p(i)=fitness(x(i,:));
    y(i,:)=x(i,:);
end
pg=x(N,:);             %Pg表示全局最优
for i=1:(N-1)
    if fitness(x(i,:))
        pg=x(i,:);
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%进入主要循环%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for t=1:M
    for j=1:N
        fv(j) = fitness(x(j,:));
    end
    fvag = sum(fv)/N;
    fmin = min(fv);
    for i=1:N
        if fv(i) <= fvag
            w = wmin + (fv(i)-fmin)*(wmax-wmin)/(fvag-fmin);
        else
            w = wmax;
        end
        v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
        x(i,:)=x(i,:)+v(i,:);
        if fitness(x(i,:))
            p(i)=fitness(x(i,:));
            y(i,:)=x(i,:);
        end
        if p(i)
            pg=y(i,:);
        end
    end
end
xm = pg';          %目标函数取最小值时的自变量
fv = fitness(pg);  %目标函数最小值
 
(三)增加学习因子
% D搜索空间维数
%%%%%%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
    for j=1:D
        x(i,j)=randn;  %初始化位置
        v(i,j)=randn;  %初始化速度
    end
end
%%%%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%
for i=1:N
    p(i)=fitness(x(i,:));
    y(i,:)=x(i,:);
end
pg = x(N,:);             %Pg为全局最优
for i=1:(N-1)
    if fitness(x(i,:))
        pg=x(i,:);
    end
end
%%%%%主循环,按照公式依次迭代%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T = - fitness(pg)/log(0.2);
for t=1:M
    groupFit = fitness(pg);  
    for i=1:N      
        Tfit(i) = exp( - (p(i) - groupFit)/T);    
    end   
    SumTfit = sum(Tfit);    
    Tfit = Tfit/SumTfit;    
    pBet = rand();   
    for i=1:N      
        ComFit(i) = sum(Tfit(1:i));       
        if pBet <= ComFit(i)
            pg_plus = x(i,:);           
           break;           
        end        
    end    
    C = c1 + c2;    
    ksi = 2/abs( 2 - C - sqrt(C^2 - 4*C));    
    for i=1:N
        v(i,:)=ksi*(v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg_plus-x(i,:)));
        x(i,:)=x(i,:)+v(i,:);
        if fitness(x(i,:))
            p(i)=fitness(x(i,:));
            y(i,:)=x(i,:);
        end
        if p(i)
            pg=y(i,:);
        end
    end
    T = T * lamda; 
    Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
 
(四)随机权重
function [xm,fv] = PSO_rand(fitness,N,c1,c2,wmax,wmin,rande,M,D)
format long;
% fitness学习函数
% c1学习因子1
% c2学习因子2
% w惯性权重
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
% xm目标函数取最小值时的自变量
% fv目标函数最小值
% rande随机权重方差
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
    for j=1:D
        x(i,j)=randn;  
        v(i,j)=randn;  
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%%%
for i=1:N
    p(i)=fitness(x(i,:));
    y(i,:)=x(i,:);
end
pg = x(N,:);             %Pg为全局最优
for i=1:(N-1)
    if fitness(x(i,:))
        pg=x(i,:);
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%进入主要循环,按照公式依次迭代%%%%%%%%%%%%%%%%%%%%
for t=1:M
    for i=1:N
        miu = wmin + (wmax - wmin)*rand();
        w = miu + rande*randn();
        v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
        x(i,:)=x(i,:)+v(i,:);
        if fitness(x(i,:))
            p(i)=fitness(x(i,:));
            y(i,:)=x(i,:);
        end
        if p(i)
            pg=y(i,:);
        end
    end
    Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
 
以上四种w的改进方法各有千秋;请读者以自身要求去选择相应的方法,除此之外,还有很多其它对于w的改进。不过,现在比较主流的给c1,c2,w建立一个相应的关系,通过c1或者c2的值来控制w的变化。

粒子群算法(PSO)关于参数w的一些改进方法的更多相关文章

  1. C语言实现粒子群算法(PSO)一

    最近在温习C语言,看的书是<C primer Plus>,忽然想起来以前在参加数学建模的时候,用过的一些智能算法,比如遗传算法.粒子群算法.蚁群算法等等.当时是使用MATLAB来实现的,而 ...

  2. 算法(三)粒子群算法PSO的介绍

    一.引言 在讲算法之前,先看两个例子: 例子一:背包问题,一个书包,一堆物品,每个物品都有自己的价值和体积,装满书包,使得装的物品价值最大. 例子二:投资问题,n个项目,第i个项目投资为ci 收益为p ...

  3. 【比较】粒子群算法PSO 和 遗传算法GA 的相同点和不同点

    目录 PSO和GA的相同点 PSO和GA不同点 粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解. PSO和G ...

  4. 粒子群算法-PSO

    粒子群优化算法 1. 背景知识 1995年美国社会心理学家Kennedy和电气工程师Eberhart共同提出粒子群优化算法(Particle Swarm Optimization, PSO).PSO算 ...

  5. C语言实现粒子群算法(PSO)二

    上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...

  6. 粒子群算法(PSO)

    这几天看书的时候看到一个算法,叫粒子群算法,这个算法挺有意思的,下面说说我个人的理解: 粒子群算法(PSO)是一种进化算法,是一种求得近似最优解的算法,这种算法的时间复杂度可能会达到O(n!),得到的 ...

  7. 粒子群算法(PSO)算法解析(简略版)

    粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...

  8. 粒子群算法 Particle Swarm Optimization, PSO(转贴收藏)

    粒子群算法(1)----粒子群算法简介 http://blog.csdn.net/niuyongjie/article/details/1569671 粒子群算法(2)----标准的粒子群算法 htt ...

  9. 基于粒子群算法求解求解TSP问题(JAVA)

    一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选 ...

随机推荐

  1. 自定义配置编译linux内核

    1 编译linux内核原因一般情况下,我们是不需要重新去编译linux内核的,但如果你发现你需要修改内核的某个部分或者说你需要的某个模块并没有编译进内核,那里你可以通过重新编译内核来满足你的需求,比如 ...

  2. python3+OpenGL环境配置

    注:示例系统环境:Windows10 64位 + Anaconda3: 1.首先登录https://www.opengl.org/resources/libraries/glut/,下载下图箭头所指的 ...

  3. 自定义ClassLoader

    自定义classloader MapleClassLoader package com.maple; import java.io.*; public class MapleClassLoader e ...

  4. [USACO19FEB]Moorio Kart

    题目 我们的神仙教练在考试里放了这道题,当时我非常惊讶啊 背包是\(O(n^3)\)的吧明明是带根号的好吧,那既然要优化的话 NTT!什么时候我们教练会在考试里放多项式了 模数\(1e9+7\)? 任 ...

  5. 3994: [SDOI2015]约数个数和

    Description 设d(x)为x的约数个数,给定1<=T<=50000 组1<=N, M<=50000 ,求 有一个公式\[d(ij)=\sum_{x|i}\sum_{y ...

  6. jenkins ansible

    ansible-playbook - hosts: test remote_user: root vars: warpath: "/root/.jenkins/workspace/172.1 ...

  7. ethereumjs/ethereumjs-account-2-test

    ethereumjs-account/test/index.js const Account = require('../index.js') const tape = require('tape') ...

  8. Zookeeper入门(一)之概述

    今天主要讲这么几个方面? 1.分布式应用: 2.什么是Zookeeper: 3.使用Zookkeeper有什么好处: ZooKeeper是一种分布式协调服务,用于管理大型主机.在分布式环境中协调和管理 ...

  9. mysql通过“延迟关联”进行limit分页查询优化的一个实例

    最近在生产上遇见一个分页查询特别慢的问题,数据量大概有200万的样子,翻到最后一页性能很低,差不多得有4秒的样子才能出来整个页面,需要进行查询优化. 第一步,找到执行慢的sql,如下: SELECT  ...

  10. [转]C#调用C++类(以COM组件的形式)

    如果想用C#调用C/C++写的函数,可以先将C/C++的函数写成dll文件,由C#用DllImport的方式来调用,但是这种方法无法调用C++写的类,如果想调用C++类,可以先把C++类封装成COM组 ...