(一)线性递减
function [xm,fv] = PSO_lin(fitness,N,c1,c2,wmax,wmin,M,D)
format long;
% fitness学习函数
% c1学习因子1
% c2学习因子2
% wmax惯性权重最大值
% wmin惯性权重最值小
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
% xm目标函数取最小值时的自变量
% fv目标函数最小值
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
for j=1:D
x(i,j)=randn;
v(i,j)=randn;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%%%
for i=1:N
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
pg = x(N,:); %Pg为全局最优
for i=1:(N-1)
if fitness(x(i,:))
pg=x(i,:);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%主循环,按照公式依次迭代%%%%%%%%%%%%%%%%%%%%%%%%%%
for t=1:M
for i=1:N
w = wmax - (t-1)*(wmax-wmin)/(M-1);
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)
pg=y(i,:);
end
end
Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
(二)自适应
function [xm,fv] = PSO_adaptation(fitness,N,c1,c2,wmax,wmin,M,D)
format long;
% fitness学习函数
% c1学习因子1
% c2学习因子2
% w惯性权重
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
% xm目标函数取最小值时的自变量
% fv目标函数最小值
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
for j=1:D
x(i,j)=randn;
v(i,j)=randn;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%先计算各个粒子的适应度%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
pg=x(N,:); %Pg表示全局最优
for i=1:(N-1)
if fitness(x(i,:))
pg=x(i,:);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%进入主要循环%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for t=1:M
for j=1:N
fv(j) = fitness(x(j,:));
end
fvag = sum(fv)/N;
fmin = min(fv);
for i=1:N
if fv(i) <= fvag
w = wmin + (fv(i)-fmin)*(wmax-wmin)/(fvag-fmin);
else
w = wmax;
end
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)
pg=y(i,:);
end
end
end
xm = pg'; %目标函数取最小值时的自变量
fv = fitness(pg); %目标函数最小值
(三)增加学习因子
% D搜索空间维数
%%%%%%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
for j=1:D
x(i,j)=randn; %初始化位置
v(i,j)=randn; %初始化速度
end
end
%%%%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%
for i=1:N
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
pg = x(N,:); %Pg为全局最优
for i=1:(N-1)
if fitness(x(i,:))
pg=x(i,:);
end
end
%%%%%主循环,按照公式依次迭代%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T = - fitness(pg)/log(0.2);
for t=1:M
groupFit = fitness(pg);
for i=1:N
Tfit(i) = exp( - (p(i) - groupFit)/T);
end
SumTfit = sum(Tfit);
Tfit = Tfit/SumTfit;
pBet = rand();
for i=1:N
ComFit(i) = sum(Tfit(1:i));
if pBet <= ComFit(i)
pg_plus = x(i,:);
break;
end
end
C = c1 + c2;
ksi = 2/abs( 2 - C - sqrt(C^2 - 4*C));
for i=1:N
v(i,:)=ksi*(v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg_plus-x(i,:)));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)
pg=y(i,:);
end
end
T = T * lamda;
Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
(四)随机权重
function [xm,fv] = PSO_rand(fitness,N,c1,c2,wmax,wmin,rande,M,D)
format long;
% fitness学习函数
% c1学习因子1
% c2学习因子2
% w惯性权重
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
% xm目标函数取最小值时的自变量
% fv目标函数最小值
% rande随机权重方差
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%初始化种群的个体%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
for j=1:D
x(i,j)=randn;
v(i,j)=randn;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%%%
for i=1:N
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
pg = x(N,:); %Pg为全局最优
for i=1:(N-1)
if fitness(x(i,:))
pg=x(i,:);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%进入主要循环,按照公式依次迭代%%%%%%%%%%%%%%%%%%%%
for t=1:M
for i=1:N
miu = wmin + (wmax - wmin)*rand();
w = miu + rande*randn();
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)
pg=y(i,:);
end
end
Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
以上四种w的改进方法各有千秋;请读者以自身要求去选择相应的方法,除此之外,还有很多其它对于w的改进。不过,现在比较主流的给c1,c2,w建立一个相应的关系,通过c1或者c2的值来控制w的变化。
- C语言实现粒子群算法(PSO)一
最近在温习C语言,看的书是<C primer Plus>,忽然想起来以前在参加数学建模的时候,用过的一些智能算法,比如遗传算法.粒子群算法.蚁群算法等等.当时是使用MATLAB来实现的,而 ...
- 算法(三)粒子群算法PSO的介绍
一.引言 在讲算法之前,先看两个例子: 例子一:背包问题,一个书包,一堆物品,每个物品都有自己的价值和体积,装满书包,使得装的物品价值最大. 例子二:投资问题,n个项目,第i个项目投资为ci 收益为p ...
- 【比较】粒子群算法PSO 和 遗传算法GA 的相同点和不同点
目录 PSO和GA的相同点 PSO和GA不同点 粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解. PSO和G ...
- 粒子群算法-PSO
粒子群优化算法 1. 背景知识 1995年美国社会心理学家Kennedy和电气工程师Eberhart共同提出粒子群优化算法(Particle Swarm Optimization, PSO).PSO算 ...
- C语言实现粒子群算法(PSO)二
上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...
- 粒子群算法(PSO)
这几天看书的时候看到一个算法,叫粒子群算法,这个算法挺有意思的,下面说说我个人的理解: 粒子群算法(PSO)是一种进化算法,是一种求得近似最优解的算法,这种算法的时间复杂度可能会达到O(n!),得到的 ...
- 粒子群算法(PSO)算法解析(简略版)
粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...
- 粒子群算法 Particle Swarm Optimization, PSO(转贴收藏)
粒子群算法(1)----粒子群算法简介 http://blog.csdn.net/niuyongjie/article/details/1569671 粒子群算法(2)----标准的粒子群算法 htt ...
- 基于粒子群算法求解求解TSP问题(JAVA)
一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选 ...
随机推荐
- Eclipse插件安装方法大全
1. M2e maven2插件安装 参考地址:http://www.sonatype.com/books/m2eclipse-book/reference/install-sect-marketpla ...
- 切换composer国内镜像
composer config -g repo.packagist composer https://packagist.phpcomposer.com
- 理解JavaScript继承(一)
理解JavaScript继承(一) 我们都知道,面向对象的编程语言非常强大,之所以强大,就是其支持继承.在JavaScript中,也支持继承,而且有多种方法实现继承,比如原型链继承,借用构造函数继承, ...
- Redis——总结
启动 redis 客户端,打开终端并输入命令 redis-cli.该命令会连接本地的 redis 服务. $redis-cli redis 127.0.0.1:6379> redis 127.0 ...
- List集合和iterator并发异常处理
一:List接口: 子类:ArrayList LinkedList 特点:Unlike sets, lists typically allow duplicate elements.不像set集合 ...
- python redis 的基本操作指令
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' redis基本命令和基本用法详解 1.redis连接 2.redis连接池 3.redis基本命令 ...
- jlink RTT 打印 BUG , FreeRTOS 在开启 tickless 模式下 无法使用的问题
一开始我以为是 jlink 的问题,后面发现是 tickless 模式搞鬼 tickless 模式下 ,内核 会 根据任务需求,会停止工作,这个时候 jlink rtt 打印就会失效!!! 不过 NR ...
- UCOSii和Linux的区别和联系
UCOSii和Linux的区别和联系 想通过UCOSii来理解Linux的系统架构,故参考一些资料,简单整理了一下UCOSii和Linux的区别和联系,以此来更好的学习Linux. 其具体对比如下: ...
- ASP.NET Core下载大文件的实现
当我们的ASP.NET Core网站需要支持下载大文件时,如果不做控制可能会导致用户在访问下载页面时发生无响应,使得浏览器崩溃.可以参考如下代码来避免这个问题. 关于此代码的几点说明: 将数据分成较小 ...
- SQL AND & OR 运算符
AND 和 OR 运算符用于基于一个以上的条件对记录进行过滤. AND 和 OR 运算符 AND 和 OR 可在 WHERE 子语句中把两个或多个条件结合起来. 假设第一个条件和第二个条件都成立,则 ...