这个文件我在今天分析学习的时候,一直有种似懂非懂的感觉,代码量700+的代码,最后开放给系统的就是一个process()方法。这里说的说的数据库检測,是针对key的检測,会用到,以下提到的结构体:

/* Data type to hold opcode with optional key name an success status */
/* 用于key的检測时使用。兴许检測操作都用到了entry结构体 */
typedef struct {
//key的名字
char* key;
//类型
int type;
//是否是成功状态
char success;
} entry;

兴许所涉及到的非常多API都是与这个结构体相关。此代码终于检測的事实上是一个叫dump.rdb的文件,在检測的后面还会加上循环冗余校验CRC64。以下亮出API:

int checkType(unsigned char t) /* 每当加入一个新的obj类型时,都要检測这个类型是否合理 */
int readBytes(void *target, long num) /* 在当前文件偏移量位置往后读取num个字节位置 */
int processHeader(void) /* 读取快照文件的头部,检測头部名称或版本是否正确 */
int loadType(entry *e) /* 为entry赋上obj的Type */
int peekType() /* 弹出版本 */
int processTime(int type) /* 去除用来表示时间的字节 */
uint32_t loadLength(int *isencoded) /* 分type读取长度 */
char *loadIntegerObject(int enctype) /* 依据当前整型的编码方式,获取数值,以字符形式返回 */
char* loadLzfStringObject() /* 获得解压后的字符串 */
char* loadStringObject() /* 获取当前文件信息字符串对象 */
int processStringObject(char** store) /* 将字符串对象赋给所传入的參数 */
double* loadDoubleValue() /* 文件里读取double类型值 */
int processDoubleValue(double** store) /* 对double类型进行赋予给參数 */
int loadPair(entry *e) /* 读取键值对 */
entry loadEntry() /* 获取entry的key结构体 */
void printCentered(int indent, int width, char* body) /* 输出界面对称的信息 */
void printValid(uint64_t ops, uint64_t bytes) /* 输出有效信息 */
void printSkipped(uint64_t bytes, uint64_t offset) /* 输出Skipped跳过bytes字节信息 */
void printErrorStack(entry *e) /* 输出错误栈的信息 */
void process(void) /* process方法是运行检測的主要方法 */

方法里面好多loadXXX()方法。这几个load方法的确比較实用,在这个检測文件里,编写者又非常人性化的构造了error的结构体。用于模拟错误信息栈的输出。

/* Hold a stack of errors */
/* 错误信息结构体 */
typedef struct {
//详细的错误信息字符串
char error[16][1024];
//内部偏移量
size_t offset[16];
//错误信息等级
size_t level;
} errors_t;
static errors_t errors;

不同的level等级相应不同的出错信息。在API里有个比較关键的方法。loadEntry,获取key相关的结构体;

/* 获取entry的key结构体 */
entry loadEntry() {
entry e = { NULL, -1, 0 };
uint32_t length, offset[4]; /* reset error container */
errors.level = 0; offset[0] = CURR_OFFSET;
//此处赋值type
if (!loadType(&e)) {
return e;
} offset[1] = CURR_OFFSET;
if (e.type == REDIS_SELECTDB) {
if ((length = loadLength(NULL)) == REDIS_RDB_LENERR) {
SHIFT_ERROR(offset[1], "Error reading database number");
return e;
}
if (length > 63) {
SHIFT_ERROR(offset[1], "Database number out of range (%d)", length);
return e;
}
} else if (e.type == REDIS_EOF) {
if (positions[level].offset < positions[level].size) {
SHIFT_ERROR(offset[0], "Unexpected EOF");
} else {
e.success = 1;
}
return e;
} else {
/* optionally consume expire */
if (e.type == REDIS_EXPIRETIME ||
e.type == REDIS_EXPIRETIME_MS) {
if (!processTime(e.type)) return e;
if (!loadType(&e)) return e;
} offset[1] = CURR_OFFSET;
//调用loadPair为Entry赋值key
if (!loadPair(&e)) {
SHIFT_ERROR(offset[1], "Error for type %s", types[e.type]);
return e;
}
} /* all entries are followed by a valid type:
* e.g. a new entry, SELECTDB, EXPIRE, EOF */
offset[2] = CURR_OFFSET;
if (peekType() == -1) {
SHIFT_ERROR(offset[2], "Followed by invalid type");
SHIFT_ERROR(offset[0], "Error for type %s", types[e.type]);
e.success = 0;
} else {
e.success = 1;
} return e;
}

当中里面的关键的赋值key,value在loadPair()方法:

/* 读取键值对 */
int loadPair(entry *e) {
uint32_t offset = CURR_OFFSET;
uint32_t i; /* read key first */
//首先从文件里读取key值
char *key;
if (processStringObject(&key)) {
e->key = key;
} else {
SHIFT_ERROR(offset, "Error reading entry key");
return 0;
} uint32_t length = 0;
if (e->type == REDIS_LIST ||
e->type == REDIS_SET ||
e->type == REDIS_ZSET ||
e->type == REDIS_HASH) {
if ((length = loadLength(NULL)) == REDIS_RDB_LENERR) {
SHIFT_ERROR(offset, "Error reading %s length", types[e->type]);
return 0;
}
} //读取key值后面跟着的value值
switch(e->type) {
case REDIS_STRING:
case REDIS_HASH_ZIPMAP:
case REDIS_LIST_ZIPLIST:
case REDIS_SET_INTSET:
case REDIS_ZSET_ZIPLIST:
case REDIS_HASH_ZIPLIST:
//由于相似ziplist,zipmap等结构体事实上是一个个结点连接而成的超级字符串。所以是直接读取
if (!processStringObject(NULL)) {
SHIFT_ERROR(offset, "Error reading entry value");
return 0;
}
break;
case REDIS_LIST:
case REDIS_SET:
//而上面这2种是传统的结构,要分结点读取
for (i = 0; i < length; i++) {
offset = CURR_OFFSET;
if (!processStringObject(NULL)) {
SHIFT_ERROR(offset, "Error reading element at index %d (length: %d)", i, length);
return 0;
}
}
break;
case REDIS_ZSET:
for (i = 0; i < length; i++) {
offset = CURR_OFFSET;
if (!processStringObject(NULL)) {
SHIFT_ERROR(offset, "Error reading element key at index %d (length: %d)", i, length);
return 0;
}
offset = CURR_OFFSET;
if (!processDoubleValue(NULL)) {
SHIFT_ERROR(offset, "Error reading element value at index %d (length: %d)", i, length);
return 0;
}
}
break;
case REDIS_HASH:
for (i = 0; i < length; i++) {
offset = CURR_OFFSET;
if (!processStringObject(NULL)) {
SHIFT_ERROR(offset, "Error reading element key at index %d (length: %d)", i, length);
return 0;
}
offset = CURR_OFFSET;
if (!processStringObject(NULL)) {
SHIFT_ERROR(offset, "Error reading element value at index %d (length: %d)", i, length);
return 0;
}
}
break;
default:
SHIFT_ERROR(offset, "Type not implemented");
return 0;
}
/* because we're done, we assume success */
//仅仅要运行过了,我们就认定为成功
e->success = 1;
return 1;
}

假设e-success=1则说明这个key的检測就过关了。为什么这么说呢,我们来看主检測方法process()方法:

/* process方法是运行检測的主要方法 */
void process(void) {
uint64_t num_errors = 0, num_valid_ops = 0, num_valid_bytes = 0;
entry entry;
//读取文件头部获取快照文件版本
int dump_version = processHeader(); /* Exclude the final checksum for RDB >= 5. Will be checked at the end. */
if (dump_version >= 5) {
if (positions[0].size < 8) {
printf("RDB version >= 5 but no room for checksum.\n");
exit(1);
}
positions[0].size -= 8;
} level = 1;
while(positions[0].offset < positions[0].size) {
positions[1] = positions[0]; entry = loadEntry();
if (!entry.success) {
//假设Entry不为成功状态
printValid(num_valid_ops, num_valid_bytes);
printErrorStack(&entry);
num_errors++;
num_valid_ops = 0;
num_valid_bytes = 0; /* search for next valid entry */
uint64_t offset = positions[0].offset + 1;
int i = 0; //接着寻找后面3个有效entries
while (!entry.success && offset < positions[0].size) {
positions[1].offset = offset; /* find 3 consecutive valid entries */
//寻找3个有效的entries
for (i = 0; i < 3; i++) {
entry = loadEntry();
if (!entry.success) break;
}
/* check if we found 3 consecutive valid entries */
if (i < 3) {
offset++;
}
} /* print how many bytes we have skipped to find a new valid opcode */
if (offset < positions[0].size) {
printSkipped(offset - positions[0].offset, offset);
} positions[0].offset = offset;
} else {
num_valid_ops++;
num_valid_bytes += positions[1].offset - positions[0].offset; /* advance position */
positions[0] = positions[1];
}
free(entry.key);
} /* because there is another potential error,
* print how many valid ops we have processed */
printValid(num_valid_ops, num_valid_bytes); /* expect an eof */
if (entry.type != REDIS_EOF) {
/* last byte should be EOF, add error */
errors.level = 0;
SHIFT_ERROR(positions[0].offset, "Expected EOF, got %s", types[entry.type]); /* this is an EOF error so reset type */
entry.type = -1;
printErrorStack(&entry); num_errors++;
} /* Verify checksum */
//版本>=5的时候,须要检验校验和
if (dump_version >= 5) {
uint64_t crc = crc64(0,positions[0].data,positions[0].size);
uint64_t crc2;
unsigned char *p = (unsigned char*)positions[0].data+positions[0].size;
crc2 = ((uint64_t)p[0] << 0) |
((uint64_t)p[1] << 8) |
((uint64_t)p[2] << 16) |
((uint64_t)p[3] << 24) |
((uint64_t)p[4] << 32) |
((uint64_t)p[5] << 40) |
((uint64_t)p[6] << 48) |
((uint64_t)p[7] << 56);
if (crc != crc2) {
SHIFT_ERROR(positions[0].offset, "RDB CRC64 does not match.");
} else {
printf("CRC64 checksum is OK\n");
}
} /* print summary on errors */
if (num_errors) {
printf("\n");
printf("Total unprocessable opcodes: %llu\n",
(unsigned long long) num_errors);
}
}

假设想了解检測的具体原理。事先了解dump.rdb的文件内容结构或许会对我们又非常大帮助。

Redis源代码分析(十二)--- redis-check-dump本地数据库检測的更多相关文章

  1. Redis源代码分析(二十八)--- object创建和释放redisObject物

    今天的学习更有效率.该Rio分析过,学习之间的另一种方式RedisObject文件,只想说RedisObject有些生成和转换.都是很类似的.列出里面长长的API列表: /* ------------ ...

  2. Redis源代码分析(二十四)--- tool工具类(2)

    在上篇文章中初步的分析了一下,Redis工具类文件里的一些使用方法,包含2个随机算法和循环冗余校验算法,今天,继续学习Redis中的其它的一些辅助工具类的使用方法.包含里面的大小端转换算法,sha算法 ...

  3. Redis源代码分析(二十二)--- networking网络协议传输

    上次我仅仅分析了Redis网络部分的代码一部分,今天我把networking的代码实现部分也学习了一遍,netWorking的代码很多其它偏重的是Clientclient的操作.里面addReply( ...

  4. Redis源代码分析(二十)--- ae事件驱动

    事件驱动的术语出现更频繁.听起来非常大的,今天我把Redis内部驱动器模型来研究它,奖励的感觉啊.一个ae.c主程序,加4文件的事件类型,让你彻底弄清楚,Redis是怎样处理这些事件的. 在Redis ...

  5. Redis源代码分析(二十七)--- rio制I/O包裹

    I/O每个操作系统,它的一个组成部分.和I/O业务质量,在一定程度上也影响了系统的效率. 今天,我在了解了Redis中间I/O的,相同的,Redis在他自己的系统中.也封装了一个I/O层.简称RIO. ...

  6. Redis源代码分析(一)--Redis结构解析

    从今天起,本人将会展开对Redis源代码的学习,Redis的代码规模比較小,很适合学习,是一份很不错的学习资料,数了一下大概100个文件左右的样子,用的是C语言写的.希望终于能把他啃完吧,C语言好久不 ...

  7. hostapd源代码分析(二):hostapd的工作机制

    [转]hostapd源代码分析(二):hostapd的工作机制 原文链接:http://blog.csdn.net/qq_21949217/article/details/46004433 在我的上一 ...

  8. OpenJDK源码研究笔记(十二):JDBC中的元数据,数据库元数据(DatabaseMetaData),参数元数据(ParameterMetaData),结果集元数据(ResultSetMetaDa

    元数据最本质.最抽象的定义为:data about data (关于数据的数据).它是一种广泛存在的现象,在许多领域有其具体的定义和应用. JDBC中的元数据,有数据库元数据(DatabaseMeta ...

  9. Redis源代码分析(十)--- testhelp.h小测试框架和redis-check-aof.c 日志检测

    周期分析struct结构体redis代码.最后,越多越发现很多的代码其实大同小异.于struct有袋1,2不分析文件,关于set集合的一些东西,就放在下次分析好了,在选择下个分析的对象时,我考虑了一下 ...

随机推荐

  1. gym 100531 三维几何+搜索

    精度有点毒, 其实可以不用double, 因为A, B必定在其中一个在三角形上,可以投影到只有x,y轴的地方叉积比较. #include<bits/stdc++.h> #define LL ...

  2. nginx一些细节知识点补充

    1.upstream 配置代理 upstream local_tomcat { server localhost:8080; } server{ location / { proxy_pass htt ...

  3. Cordova 打包签名

    1.第一步 在项目根目录下运行命令cordova build --release android,会在testApp\platforms\android\build\outputs\apk目录下生成一 ...

  4. Java 中类的初始化过程

    先来一张 JVM 中的内存模型 . 在Java 虚拟机原理这本书中介绍了类会被初始化的 5 种情况 . 1 遇到 new getstatic putstatic 和 invokestatic 这 4 ...

  5. CLR基础

    一.各个语言的长处 ①非托管C/C++可对系统进行低级控制.可完全按照自己的想法管理内存,必要时方便地创建线程②使用Microsoft Visual Basic 6.0可以快速生成UI应用程序,并可以 ...

  6. JVM CPU占满问题定位

    RASP加载后出现JVM CPU占满问题,jstack -F输出信息无法找到对应占用CPU的线程 perf定位到占用CPU的热代码位于Dependencies::find_finalizable_su ...

  7. C#拖拽操作

    C#的拖拽 本文将以Winform为例 有两个主要的事件: DragEnter 拖拽到区域中触发的事件 DragDrop 当拖拽落下的时候出发此事件 饮水思源 参考博客: http://www.cnb ...

  8. [ 原创 ]Centos 7.0下启动 Tomcat8.5.15

    1.打开8080端口  firewall-cmd --zone=public --add-port=8080/tcp --permanent 2.重启防火墙   firewall-cmd --relo ...

  9. python脚本 pyqt 打包成windows可执行exe文件 pyinstaller

    今天学习pyqt,做了一些好玩的东西. 好奇之中想试试python脚本编译成可执行文件,一顿查询之后成功了! 我的环境是: windows10 64bit    python3.5    pyqt5 ...

  10. [BZOJ5298][CQOI2018]交错序列(DP+矩阵乘法)

    https://blog.csdn.net/dream_maker_yk/article/details/80377490 斯特林数有时并没有用. #include<cstdio> #in ...