Cut Pieces

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) Total Submission(s): 728    Accepted Submission(s): 303

Problem Description
Suppose we have a sequence of n blocks. Then we paint the blocks. Each block should be painted a single color and block i can have color 1 to color ai. So there are a total of prod(ai) different ways to color the blocks.  Consider one way to color the blocks. We call a consecutive sequence of blocks with the same color a "piece". For example, sequence "Yellow Yellow Red" has two pieces and sequence "Yellow Red Blue Blue Yellow" has four pieces. What is S, the total number of pieces of all possible ways to color the blocks? 
This is not your task. Your task is to permute the blocks (together with its corresponding ai) so that S is maximized.
 
Input
First line, number of test cases, T.  Following are 2*T lines. For every two lines, the first line is n, length of sequence; the second line contains n numbers, a1, ..., an
Sum of all n <= 106.  All numbers in the input are positive integers no larger than 109.
 
Output
Output contains T lines.  Each line contains one number, the answer to the corresponding test case.  Since the answers can be very large, you should output them modulo 109+7. 
 
Sample Input
1
3
1 2 3
 
Sample Output
14

Hint

Both sequence 1 3 2 and sequence 2 3 1 result in an S of 14.

 
Source
 
Recommend
zhuyuanchen520
 

对于一个序列:a,b,c,d,e,f....

设sum=a*b*c*d*....;

对于a,b,当a与b不同的时候可以增加(ab-min(a,b))*(sum/ab)=(s-s/max(a,b));

max(a,b)越大,增加的也就越大!所以当然让大的数多取,

比如:n=7的时候

对于序列1 2 3 4 5 6 7

我可以排列成

1 5 2 6 3 7 4;

这样我就使得最大的三个数(5,6,7)都取了两次,从而答案是最优的!!!

n=6的时候

对于序列1 2 3 4 5 6

可以排列成

1 5 2 6 3

还有个4就只能放边上了!!!

即5,6都取了两次,而4只能取1次啦!!!

 #include<algorithm>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAX 1000010
#define mod 1000000007
using namespace std;
typedef long long ll; int ext_gcd(int a,int b,int &x,int &y)
{
if(b==){x=;y=;return a;}
int d=ext_gcd(b,a%b,x,y),t;
t=x;x=y;y=t-a/b*y;
return d;
}
int inv(int a,int mo)
{
int x,y,dx,g;
g=ext_gcd(a,mo,x,y);
dx=mo/g;
return (x%dx+dx)%dx;
} int a[];
int main()
{
int head,tail,T,i,n,jnm;
ll ji,ans;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
ji=;
for(i=;i<=n;i++)
{
scanf("%d",&a[i]);
ji*=a[i];
ji%=mod;
}
sort(a+,a+n+);
ans=ji;
head=n-n/+;
tail=n;
if(n&)//区分奇偶的区别!!!!
ans=((ans+*(ji-ji*inv(a[head-],mod)%mod))%mod+mod)%mod;
else
ans=((ans+*(ji-ji*inv(a[head-],mod)%mod))%mod+mod)%mod;
for(i=head;i<=tail;i++)
ans=((ans+*(ji-ji*inv(a[i],mod)%mod))%mod+mod)%mod;
if(n==)ans=a[];
printf("%lld\n",ans);
}
return ;
}

hdu 4655 Cut Pieces(想法题)的更多相关文章

  1. HDU 4655 Cut Pieces(2013多校6 1001题 简单数学题)

    Cut Pieces Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total ...

  2. HDU 4655 Cut Pieces(数学分析题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4655 题意:给出n个石子,第i个石子可以染ai种颜色.对于每种颜色,比如颜色1221,我们称有3段.连 ...

  3. hdu 4655 Cut Pieces 找规律

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4655 题意:给你一组整数,代表每个木块所能涂成的颜色种数(编号1~ai),相邻的两块所能涂成的颜色如果是一 ...

  4. hdu 4655 Cut Pieces

    这个解题报告讲的很详细了!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #in ...

  5. HDU 4655 Cut Pieces 找规律+简单计数

    解法参考:http://blog.csdn.net/a601025382s/article/details/9840125 #include <cstdio> #include <c ...

  6. HDU - 5806 NanoApe Loves Sequence Ⅱ 想法题

    http://acm.hdu.edu.cn/showproblem.php?pid=5806 题意:给你一个n元素序列,求第k大的数大于等于m的子序列的个数. 题解:题目要求很奇怪,很多头绪但写不出, ...

  7. HDU 4972 Bisharp and Charizard 想法题

    Bisharp and Charizard Time Limit: 1 Sec  Memory Limit: 256 MB Description Dragon is watching NBA. He ...

  8. CodeForces 111B - Petya and Divisors 统计..想法题

    找每个数的约数(暴力就够了...1~x^0.5)....看这约数的倍数最后是哪个数...若距离大于了y..统计++...然后将这个约数的最后倍数赋值为当前位置...好叼的想法题.... Program ...

  9. HDU 4762 Cut the Cake (2013长春网络赛1004题,公式题)

    Cut the Cake Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

随机推荐

  1. 动态GI

    在Engine/Config 目录中找到ConsoleVariables.ini并打开,在其中加入 r.LightPropagationVolume = 1 ,保存,重启引擎 如果场景中有Post P ...

  2. es的调优

    3.1.分片查询方式 当前的图片中有5个主分片,5个副本:这对于es的集群来说,这种配置是非常常见的: 但是问题来了,当我们的客户端做查询的时候,程序会向主分片发送请求还是副本发送请求? 还是说直接去 ...

  3. HTML5和CSS3兼容清单

    1.CSS3 2.CSS3选择器 3.HTML5 4.HTML5 From  

  4. C++用参数返回结果与用返回值返回结果的思考

    /*** *xvkBuffer作为参数比写为返回值的好处是: *1,xvkBuffer可以是堆变量或栈变量,若写为返回值则只能是堆上申请,因为必须保证它的永久性 *2,xvkBuffer或作为栈变量返 ...

  5. C# Oledb 连接Access数据库字符串

    string connStr = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + dbFile + ";Persist ...

  6. Redis 简介,安装,卸载

    一.Redis简介 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(s ...

  7. leetcode 142. 环形链表 II(c++)

    给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 pos 是 - ...

  8. 如何实现免登陆功能(cookie session?)

    Cookie的机制 Cookie是浏览器(User Agent)访问一些网站后,这些网站存放在客户端的一组数据,用于使网站等跟踪用户,实现用户自定义功能. Cookie的Domain和Path属性标识 ...

  9. python 设置开机启动脚本

    1.创建python_auto.bat的快捷方式,放入启动项: C:\Users\Administrator\AppData\Roaming\Microsoft\Windows\Start Menu\ ...

  10. 大数据架构师必读的NoSQL建模技术

    大数据架构师必读的NoSQL建模技术 从数据建模的角度对NoSQL家族系统做了比较简单的比较,并简要介绍几种常见建模技术. 1.前言 为了适应大数据应用场景的要求,Hadoop以及NoSQL等与传统企 ...