HDU 6623 Minimal Power of Prime
Time limit 1000 ms
Memory limit 65536 kB
OS Windows
中文题意
给一个数n,设将n质因数分解后可以得到
\]
其中\(\omega(n)\)意思是n的不同质因子个数,\(a_i\)是n的质因子。
要求输出最小的\(p_i\)。
题解
看完题解感觉很妙啊——
Let's first factorize \(N\) using prime numbers not larger than \(N^{\frac{1}{5}}\). And let's denote \(M\) as the left part, all the prime factors of \(M\) are larger than \(N^{\frac{1}{5}}\). If \(M=1\) then we are done, otherwise M can only be \(P^2\), \(P^3\), \(P^4\) or \(P^2 \times Q^2\), here \(P\) and \(Q\) are prime numbers.
- If \(M^{\frac{1}{4}}\) is an integer, we can know that \(M=P^4\). Update answer using 4 and return.
- If \(M^{\frac{1}{3}}\) is an integer, we can know that \(M=P^3\). Update answer using 3 and return.
- If \(M^{\frac{1}{2}}\) is an integer, we can know that \(M=P^2\) or \(M=P^2 \times Q^2\). No matter which situation, we can always update answer using 2 and return.
- If (1)(2)(3) are false, we can know that answer=1.
Since there are just \(O(\frac{N^{\frac{1}{5}}}{log(N)})\) prime numbers, so the expected running time is \(O(\frac{TN^{\frac{1}{5}}}{log(N)})\).
官方题解导致我一开始没反应过来的地方在于
M can only be \(P^2\), \(P^3\), \(P^4\) or \(P^2 \times Q^2\),
不是only,\(M\)还可以是\(PQRS\)、\(P^2QR\)、\(PQR\)、\(P^3Q\)、\(P^2Q\),之类的,而这些的答案都是1,也就是题解里编号4所说的,不是前三种情况。
另外一个问题,如何判断\(\sqrt[4]M\)、\(\sqrt[3]M\)、\(\sqrt{M}\)是否是整数呢?我们可以求出\(\sqrt[4]M\)、\(\sqrt[3]M\)、\(\sqrt{M}\)向下取整后的结果,再乘回去,比如,看看是否存在\(\lfloor\sqrt{M}\rfloor^2==M\)。
还有,求\(\lfloor\sqrt[3]{M}\rfloor\)时,pow函数精度不太够,用pow(n,1.0/3.0)
会WA,要二分法求。下面这段二分法的代码来自这个博客代码里的two函数,要是有整数解就返回整数解,否则返回负一,这倒是挺好。
还有……复杂度那个log哪里来的?和质数分布有关?
源代码
#include<stdio.h>
#include<math.h>
#include<algorithm>
int T;
long long n;
long long cnt=0;
long long prime[10000];
long long ans;
bool vis[10000];
void shai()//取变量名一次回到解放前。还别说,挺方便的,一目了然
{
for(int i=2;i<=10000;i++)
{
if(!vis[i]) prime[++cnt]=i;
for(int j=1;j<=cnt&&i*prime[j]<=10000;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)
break;
}
}
}
long long sancigeng(long long a)
{
long long l=1,r=(long long)pow(n*1.0, 1.0 / 3) + 1,mid;
while(l<=r){
mid=(l+r)>>1;
if(mid*mid*mid==n) return mid;
else if(mid*mid*mid>n) r=mid-1;
else l=mid+1;
}
return -1;
}
int main()
{
shai();
//freopen("test.in","r",stdin);
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
ans=0x7fffffff;
int pw,pr;
for(int i=1;i<=cnt;i++)
{
if(n%prime[i]==0)
{
pr=prime[i],pw=0;
while(n%pr==0)
{
n/=pr;
pw++;
}
if(pw<ans) ans=pw;
}
if(ans==1)
{
n=1;
break;
}
}
if(n==1)
{
printf("%lld\n",ans);
continue;
}
long long temp1=sqrt(n),temp2=sqrt(temp1),temp3=sancigeng(n);
if(temp2*temp2==temp1&&temp1*temp1==n)
{//algorithm里的max和min不支持long long和int混杂的参数,居然不会隐式类型转换
ans=std::min(ans,4LL);
}
else if(temp3>=0)
{
ans=std::min(ans,3LL);
}
else if(temp1*temp1==n)
{
ans=std::min(ans,2LL);
}
else ans=1;
printf("%lld\n",ans);
}
return 0;
}
HDU 6623 Minimal Power of Prime的更多相关文章
- HDU 6623"Minimal Power of Prime"(数学)
传送门 •题意 给你一个大于 1 的正整数 n: 它可以分解成不同的质因子的幂的乘积的形式,问这些质因子的幂中,最小的幂是多少. •题解 定义 $ans$ 表示最终答案: ①如果 $ans \ge 5 ...
- HDU 6623 Minimal Power of Prime(数学)
传送门 •题意 给你一个大于 1 的正整数 n: 它可以分解成不同的质因子的幂的乘积的形式,问这些质因子的幂中,最小的幂是多少. •题解 把[1,10000]内的素数筛出来,然后对于每个素$P$数遍历 ...
- HDU 6623 Minimal Power of Prime(思维)题解
题意: 已知任意大于\(1\)的整数\(a = p_1^{q_1}p_2^{q_2} \cdots p_k^{q_k}\),现给出\(a \in [2,1e18]\),求\(min\{q_i\},q ...
- 2019杭电多校第四场hdu6623 Minimal Power of Prime
Minimal Power of Prime 题目传送门 解题思路 先打\(N^\frac{1}{5}\)内的素数表,对于每一个n,先分解\(N^\frac{1}{5}\)范围内的素数,分解完后n变为 ...
- [2019杭电多校第四场][hdu6623]Minimal Power of Prime
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6623 题目大意为求一个数的唯一分解的最小幂次.即120=23*31*51则答案为1. 因为数字太大不能 ...
- 2019 Multi-University Training Contest 4 - 1010 - Minimal Power of Prime
http://acm.hdu.edu.cn/showproblem.php?pid=6623 题意,给50000个1e18级别的数N,求它质因数分解里面的最小的指数(不算0) 比赛的时候给划了一个1e ...
- 2019HDU多校Minimal Power of Prime——分段讨论&&思维
题目 将 $n$($1 < n \leq 10^{18}$)质因数分解,求质因数幂的最小值. 分析 直接质因数分解,不太行. 可以这样想,对小区间质因数分解,n变小了,再枚举答案. 打印1-10 ...
- 2019hdu多校 Minimal Power of Prime
题目链接:Click here 题目大意:求一个数分解质因数后的最小幂指数 Solution: 首先,我们肯定是不能直接暴力求解的 我们先考虑筛出1e4范围以内的所有质数,把x所有这个范围内的质因子筛 ...
- 【HDOJ6623】Minimal Power of Prime(Powerful Number)
题意:给定大整数n,求其质因数分解的最小质数幂 n<=1e18 思路:常规分解算法肯定不行 考虑答案大于1的情况只有3种:质数的完全平方,质数的完全立方,以及p^2*q^3,p,q>=1三 ...
随机推荐
- Python示例-Logging
logging.ini日志配置文件内容示例: [loggers] keys=root,demo [handlers] keys=consoleHandler,timedRotatingFileHand ...
- vue项目中,无需打包而动态更改背景图以及标题
1.背景 今天,项目经理对已完成的项目提出了一个需求,即项目的基础功能目前针对于各个基层法院都适用,而对于不同的法院,我们每次都需要前端研发来更改所属法院的法院名称以及背景图,这样对于演示者来说是非常 ...
- python+selenium元素定位之XPath学习02
XPath 语法 XPath 使用路径表达式来选取 XML 文档中的节点或节点集.节点是通过沿着路径 (path) 或者步 (steps) 来选取的. XML 实例文档 我们将在下面的例子中使用这个 ...
- 如何上传大文件到github上
真的是被百度坑怕了,只适合我自己的 如果你之前安装git成功的话,右键会出现两个新选项,分别为Git Gui Here,Git Bash Here,这里我们选择Git Bash Here,进入如下界面 ...
- SQL SERVER中求上月、本月和下月的第一天和最后一天[转]
--上月的第一天 ),,,) ,,) --上月的最后一天 ),,,)),)+' 23:59:59' ,,)) --本月的第一天 ),,) ),)') --本月的最后一天 ),,,,)),)+' 23: ...
- vue $forceUpdate() 强制重新渲染
vue $forceUpdate() 强制重新渲染:https://blog.csdn.net/z9061/article/details/94862047
- JavaScript ES6 class指南
前言 EcmaScript 2015 (又称ES6)通过一些新的关键字,使类成为了JS中一个新的一等公民.但是目前为止,这些关于类的新关键字仅仅是建立在旧的原型系统上的语法糖,所以它们并没有带来任何的 ...
- JProfiler> ERROR: Invalid license key. Aborting.
用IDEA+Tomcat的方式打开JProfiler,出现错误 1,Event Log 出错 16:10 Application Server was not connected before run ...
- Scrapy 教程(四)-命令
scrapy 没有界面,需要命令行来操作. 非常简单,总共也就十四五个命令,分为全局命令和项目命令. 全局命令 在哪都能用 常用命令 scrapy startproject name 创建项目/工程 ...
- 洛谷 - P1346 - 电车 - Dijkstra/01BFS
https://www.luogu.org/problem/P1346 使用最短路之前居然忘记清空了. #include<bits/stdc++.h> using namespace st ...