转载:

http://blog.csdn.net/programmingring/article/details/37969745

https://zh.wikipedia.org/wiki/AVL%E6%A0%91

理解avl树,首先需要理解二叉搜索树:

http://www.cnblogs.com/skywang12345/p/3576328.html

写在前面的话: 

  linux 内核中数据结构的存储已经不在用avl树,我在对应的代码中也没有找到实现,应该是内核中全部用rbtree替换了.zebos中avl树的实现相对较复杂,考虑了临时缓冲等多种因素,不适合作为初学者理解avl树的入门代码,因此,在网络上找到两篇姐姐avl树的文章,讲的很透彻了,以此作入门.理解其它avl树的代码应该很容易了.

正文理解:

AVL树的介绍

AVL树是根据它的发明者G.M. Adelson-Velsky和E.M. Landis命名的。
它是最先发明的自平衡二叉查找树,也被称为高度平衡树。相比于"二叉查找树",它的特点是:AVL树中任何节点的两个子树的高度最大差别为1。 

上面的两张图片,左边的是AVL树,它的任何节点的两个子树的高度差别都<=1;而右边的不是AVL树,因为7的两颗子树的高度相差为2(以2为根节点的树的高度是3,而以8为根节点的树的高度是1)。

AVL树的查找、插入和删除在平均和最坏情况下都是O(logn)。
如果在AVL树中插入或删除节点后,使得高度之差大于1。此时,AVL树的平衡状态就被破坏,它就不再是一棵二叉树;为了让它重新维持在一个平衡状态,就需要对其进行旋转处理。学AVL树,重点的地方也就是它的旋转算法;在后文的介绍中,再来对它进行详细介绍。

AVL树的C实现

1. 节点

1.1 定义

 typedef int Type;

 typedef struct AVLTreeNode{
Type key; // 关键字(键值)
int height;
struct AVLTreeNode *left; // 左孩子
struct AVLTreeNode *right; // 右孩子
}Node, *AVLTree;

AVL树的节点包括的几个组成对象:
(01) key -- 是关键字,是用来对AVL树的节点进行排序的。
(02) left -- 是左孩子。
(03) right -- 是右孩子。
(04) height -- 是高度。

1.2 节点的创建

 /*
* 创建AVL树结点。
*
* 参数说明:
* key 是键值。
* left 是左孩子。
* right 是右孩子。
*/
static Node* avltree_create_node(Type key, Node *left, Node* right)
{
Node* p; if ((p = (Node *)malloc(sizeof(Node))) == NULL)
return NULL;
p->key = key;
p->height = ;
p->left = left;
p->right = right; return p;
}

1.3 树的高度

 #define HEIGHT(p)    ( (p==NULL) ? 0 : (((Node *)(p))->height) )

 /*
* 获取AVL树的高度
*/
int avltree_height(AVLTree tree)
{
return HEIGHT(tree);
}

关于高度,有的文章中将"空二叉树的高度定义为-1",而本文采用维基百科上的定义:树的高度为最大层次。即空的二叉树的高度是0,非空树的高度等于它的最大层次(根的层次为1,根的子节点为第2层,依次类推)。

1.4 比较大小

 #define MAX(a, b)    ( (a) > (b) ? (a) : (b) 

2. 旋转

AVL树的基本操作一般涉及运作同在不平衡的二叉查找树所运作的同样的算法。但是要进行预先或随后做一次或多次所谓的"AVL旋转"。

以下图表以四列表示四种情况,每行表示在该种情况下要进行的操作。在左左和右右的情况下,只需要进行一次旋转操作;在左右和右左的情况下,需要进行两次旋转操作。

通过上图可以知道,如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。需要说明的是,下面的内容只给出在这四中情况下如何进行旋转使得avl树达到新的平衡,以帮助读者理解avl树的代码,内容不会涉及具体这样的原因,你只需要知道,看,我进行这样操作后,会重新得到一个二叉平衡搜索树。下面给出它们的示意图:

上图中的4棵树都是"失去平衡的AVL树",从左往右的情况依次是:LL、LR、RL、RR。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一,它们都由各自的定义:

(1) LL:LeftLeft,也称为"左左"。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面LL情况中,由于"根节点(8)的左子树(4)的左子树(2)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

(2) LR:LeftRight,也称为"左右"。插入或删除一个节点后,根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面LR情况中,由于"根节点(8)的左子树(4)的左子树(6)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

(3) RL:RightLeft,称为"右左"。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面RL情况中,由于"根节点(8)的右子树(12)的左子树(10)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。

(4) RR:RightRight,称为"右右"。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
     例如,在上面RR情况中,由于"根节点(8)的右子树(12)的右子树(14)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。

前面说过,如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。AVL失去平衡之后,可以通过旋转使其恢复平衡,下面分别介绍"LL(左左),LR(左右),RR(右右)和RL(右左)"这4种情况对应的旋转方法。

avl树的旋转,核心思想在旋转这一节的第一张图中表达的已经很清楚了,无论是左旋还是右旋(实质上只有两种旋转),在写函数代码的时候,函数的形参是失去平很的根节点root,函数的具体实现内容是,失去平衡的根节点root围绕着平衡后的根节点 pivot进行相应的旋转操作。

LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:

图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。

LL的旋转代码

 /*
* LL:左左对应的情况(右单旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* left_left_rotation(AVLTree k2)
{
AVLTree k1; k1 = k2->left;
k2->left = k1->right;
k1->right = k2; k2->height = MAX( HEIGHT(k2->left), HEIGHT(k2->right)) + ;
k1->height = MAX( HEIGHT(k1->left), k2->height) + ; return k1;
}

我感觉上面函数名字起得有问题,应该叫做left_left_situation或者right_rotation,因为实际上,对于LL的情形来说,实际上对应的是右旋转:即传入的形参是失去平衡的根节点,函数的内容是失去平衡的根节点root围绕着重新平衡后的根节点pivot进行右旋转操作。

2.2 RR的旋转

理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:

图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。

RR的旋转代码

/*
* RR:右右对应的情况(左单旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* right_right_rotation(AVLTree k1)
{
AVLTree k2; k2 = k1->right;
k1->right = k2->left;
k2->left = k1; k1->height = MAX( HEIGHT(k1->left), HEIGHT(k1->right)) + 1;
k2->height = MAX( HEIGHT(k2->right), k1->height) + 1; return k2;
}

我感觉上面函数名字起得有问题,应该叫做right_right_situation或者left_rotation,因为实际上,对于RR的情形来说,实际上对应的是左旋转:即传入的形参是失去平衡的根节点,函数的内容是失去平衡的根节点root围绕着重新平衡后的根节点pivot进行左旋转操作。 

2.3 LR的旋转

LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图

第一次旋转是围绕"k1"进行的"RR旋转",第二次是围绕"k3"进行的"LL旋转"。

LR的旋转代码

 /*
* LR:左右对应的情况(左双旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* left_right_rotation(AVLTree k3)
{
k3->left = right_right_rotation(k3->left); return left_left_rotation(k3);
}
复制代码

左右旋转的情况结合本节第一张图最好理解。

2.4 RL的旋转
RL是与LR的对称情况!RL恢复平衡的旋转方法如下:

RL的情况结合本节第一张图最好理解。

 /*
* RL:右左对应的情况(右双旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* right_left_rotation(AVLTree k1)
{
k1->right = left_left_rotation(k1->right); return right_right_rotation(k1);
}

3. 插入

插入节点的代码

 /*
* 将结点插入到AVL树中,并返回根节点
*
* 参数说明:
* tree AVL树的根结点
* key 插入的结点的键值
* 返回值:
* 根节点
*/
Node* avltree_insert(AVLTree tree, Type key)
{
if (tree == NULL)
{
// 新建节点
tree = avltree_create_node(key, NULL, NULL);
if (tree==NULL)
{
printf("ERROR: create avltree node failed!\n");
return NULL;
}
}
else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
{
tree->left = avltree_insert(tree->left, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (HEIGHT(tree->left) - HEIGHT(tree->right) == )
{
if (key < tree->left->key)
tree = left_left_rotation(tree);
else
tree = left_right_rotation(tree);
}
}
else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
{
tree->right = avltree_insert(tree->right, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (HEIGHT(tree->right) - HEIGHT(tree->left) == )
{
if (key > tree->right->key)
tree = right_right_rotation(tree);
else
tree = right_left_rotation(tree);
}
}
else //key == tree->key)
{
printf("添加失败:不允许添加相同的节点!\n");
} tree->height = MAX( HEIGHT(tree->left), HEIGHT(tree->right)) + ; return tree;
}

4. 删除

删除节点的代码

 /*
* 删除结点(z),返回根节点
*
* 参数说明:
* ptree AVL树的根结点
* z 待删除的结点
* 返回值:
* 根节点
*/
static Node* delete_node(AVLTree tree, Node *z)
{
// 根为空 或者 没有要删除的节点,直接返回NULL。
if (tree==NULL || z==NULL)
return NULL; if (z->key < tree->key) // 待删除的节点在"tree的左子树"中
{
tree->left = delete_node(tree->left, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (HEIGHT(tree->right) - HEIGHT(tree->left) == )
{
Node *r = tree->right;
if (HEIGHT(r->left) > HEIGHT(r->right))
tree = right_left_rotation(tree);
else
tree = right_right_rotation(tree);
}
}
else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
{
tree->right = delete_node(tree->right, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (HEIGHT(tree->left) - HEIGHT(tree->right) == )
{
Node *l = tree->left;
if (HEIGHT(l->right) > HEIGHT(l->left))
tree = left_right_rotation(tree);
else
tree = left_left_rotation(tree);
}
}
else // tree是对应要删除的节点。
{
// tree的左右孩子都非空
if ((tree->left) && (tree->right))
{
if (HEIGHT(tree->left) > HEIGHT(tree->right))
{
// 如果tree的左子树比右子树高;
// 则(01)找出tree的左子树中的最大节点
// (02)将该最大节点的值赋值给tree。
// (03)删除该最大节点。
// 这类似于用"tree的左子树中最大节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
Node *max = avltree_maximum(tree->left);
tree->key = max->key;
tree->left = delete_node(tree->left, max);
}
else
{
// 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
// 则(01)找出tree的右子树中的最小节点
// (02)将该最小节点的值赋值给tree。
// (03)删除该最小节点。
// 这类似于用"tree的右子树中最小节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
Node *min = avltree_maximum(tree->right);
tree->key = min->key;
tree->right = delete_node(tree->right, min);
}
}
else
{
Node *tmp = tree;
tree = tree->left ? tree->left : tree->right;
free(tmp);
}
} return tree;
} /*
* 删除结点(key是节点值),返回根节点
*
* 参数说明:
* tree AVL树的根结点
* key 待删除的结点的键值
* 返回值:
* 根节点
*/
Node* avltree_delete(AVLTree tree, Type key)
{
Node *z; if ((z = avltree_search(tree, key)) != NULL)
tree = delete_node(tree, z);
return tree;
}

好了,avl树重点到此结束,后面的内容参考原文吧。

原文链接:http://blog.csdn.net/programmingring/article/details/37969745

linux 内核数据结构之 avl树.的更多相关文章

  1. linux内核数据结构之链表

    linux内核数据结构之链表 1.前言 最近写代码需用到链表结构,正好公共库有关于链表的.第一眼看时,觉得有点新鲜,和我之前见到的链表结构不一样,只有前驱和后继指针,而没有数据域.后来看代码注释发现该 ...

  2. linux内核数据结构学习总结

    目录 . 进程相关数据结构 ) struct task_struct ) struct cred ) struct pid_link ) struct pid ) struct signal_stru ...

  3. linux 内核数据结构之红黑树.

    转载: http://www.cnblogs.com/haippy/archive/2012/09/02/2668099.html https://zh.wikipedia.org/zh/%E7%BA ...

  4. linux内核数据结构之kfifo

    1.前言 最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的.缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度.例如一个进程A产 ...

  5. Linux 内核数据结构:Linux 双向链表

    Linux 内核提供一套双向链表的实现,你可以在 include/linux/list.h 中找到.我们以双向链表着手开始介绍 Linux 内核中的数据结构 ,因为这个是在 Linux 内核中使用最为 ...

  6. Linux 内核数据结构:双向链表

    Linux 内核提供一套双向链表的实现,你可以在 include/linux/list.h 中找到.我们以双向链表着手开始介绍 Linux 内核中的数据结构 ,因为这个是在 Linux 内核中使用最为 ...

  7. linux内核数据结构--进程相关

    linux里面,有一个结构体task_struct,也叫“进程描述符”的数据结构,它包含了与进程相关的所有信息,它非常复杂,每一个字段都可能与一个功能相关,所以大部分细节不在我的研究范围之内,在这篇文 ...

  8. linux内核数据结构之kfifo【转】

    1.前言 最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的.缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度.例如一个进程A产 ...

  9. Linux内核数据结构之kfifo详解

    本文分析的原代码版本: 2.6.24.4 kfifo的定义文件: kernel/kfifo.c kfifo的头文件: include/linux/kfifo.h kfifo是内核里面的一个First ...

随机推荐

  1. Nowcoder 挑战赛23 B 游戏 ( NIM博弈、SG函数打表 )

    题目链接 题意 : 中文题.点链接 分析 : 前置技能是 SG 函数.NIM博弈变形 每次可取石子是约数的情况下.那么就要打出 SG 函数 才可以去通过异或操作判断一个局面的胜负 打 SG 函数的时候 ...

  2. UVa 1592 Database (map)

    题意:给出n行m列的数据库(数据范围: n 1~10000, m 1~10), 问你能不能找出两行r1, r2,使得这两行中的c1, c2列是一样的, 即(r1,c1)==(r2,c1) && ...

  3. Angular 文档中的修改链接是从哪里改的

    如何修改修改的文本的链接. 如下图表示的,如何修改这个地方的链接到自己的 SCM 中. 你需要修改的文件为: aio\tools\transforms\templates\lib\githubLink ...

  4. [JZOJ6244]【NOI2019模拟2019.7.1】islands【计数】【图论】

    Description n<=1e9,M,K<=100 Solution 显然任选m个港口的答案是一样的,乘个组合数即可. 考虑枚举m个港口的度数之和D 可以DP计算 记\(F_{m,D} ...

  5. oracle 获取时间

    1.获取当前时间的前24小时的各小时时间段 select to_char(to_date(to_char(sysdate ) ,'yyyy-mm-dd hh24') || ':00:00','yyyy ...

  6. sqli-labs(4)

    sqli-libs(4)通关过程 0x01爱之初体验 首先我们进行注入试探 发现我们的单引号 回显事正常的 双引号回显反而是错误的 查看源码我们发现 多了一个给id赋值的语句 我们在php上面执行一下 ...

  7. BeanCopier对象复制学习

    BeanCopier是Cglib包中的一个类,用于对象的复制. 注意:目标对象必须先实例化  而且对象必须要有setter方法 初始化例子:   BeanCopier copier = BeanCop ...

  8. 浏览器端-W3School-Browser:Window 对象

    ylbtech-浏览器端-W3School-Browser:Window 对象 1.返回顶部 1. Window 对象 Window 对象 Window 对象表示浏览器中打开的窗口. 如果文档包含框架 ...

  9. committed与urgent的区别

    Committed跟Urgent都是time automaton 中用来表示state的关键词. 它们的主要区别是: Committed前后的两个状态改变(transition)是串行发生,不可打断的 ...

  10. PythonScript_demo--搭建PXE服务器

    前言 是一个测试向的Demo,在实验环境中改改还是可以用的,有助理解PXE服务器的原理.可以结合PXE服务器原理细节来看,传送门:点这里 软件环境 系统 RHEL7 软件 Python 27 RHEL ...