题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4002

题解

神仙题。

根据下面的一个提示:

\[b^2 \leq d \leq (b+1)^2
\]

也就是说 \(-1 < b - \sqrt d \leq 0\)。

那么如果我们构造出一个数列 \(f\),其通项公式为

\[f_n = (\frac{b + \sqrt d}{2})^n + (\frac{b - \sqrt d}{2})^n
\]

因为后面的 \((\frac{b - \sqrt d}{2})^n\) 的绝对值 \(< 1\),(在 \(2 | n\) 且 \(b \neq \sqrt d\) 的时候 \(> 0\),否则 \(<0\))。所以我们只要能求出这个东西,就可以非常快速地求出原题的要求的式子了。


发现这个东西非常像由特征根构造的通项公式。于是我们设 \(f_n = a \cdot f_{n-1} + c \cdot f_{n-2}\)。

\[x^2=ax+c\\x^2-ax-c=0\\x = \frac{a\pm \sqrt{a^2 + 4c}}{2}
\]

于是令 \(a = b, c = \frac{d - b^2}4\)。

正确性很容易验证。


然后用矩阵求一下即可。

在 \(2 | n\) 且 \(b \neq \sqrt d\) 的时候需要把 \(a_n - 1\)。


#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const ull P = 7528443412579576937; ull n, b;
ull d; inline ull smod(ull x) { return x >= P ? x - P : x; }
inline void sadd(ull &x, const ull &y) { x += y; x >= P ? x -= P : x; } inline ull fmul(ull x, ull y) {
ull ans = 0;
for (; y; y >>= 1, sadd(x, x)) if (y & 1) sadd(ans, x);
return ans;
} struct Matrix {
ull a[2][2]; inline Matrix() { memset(a, 0, sizeof(a)); }
inline Matrix(const ull &x) {
memset(a, 0, sizeof(a));
a[0][0] = a[1][1] = x;
} inline Matrix operator * (const Matrix &b) {
Matrix c;
c.a[0][0] = smod(fmul(a[0][0], b.a[0][0]) + fmul(a[0][1], b.a[1][0]));
c.a[0][1] = smod(fmul(a[0][0], b.a[0][1]) + fmul(a[0][1], b.a[1][1]));
c.a[1][0] = smod(fmul(a[1][0], b.a[0][0]) + fmul(a[1][1], b.a[1][0]));
c.a[1][1] = smod(fmul(a[1][0], b.a[0][1]) + fmul(a[1][1], b.a[1][1]));
return c;
}
} A, B; inline Matrix fpow(Matrix x, ull y) {
Matrix ans(1);
for (; y; y >>= 1, x = x * x) if (y & 1) ans = ans * x;
return ans;
} inline void work() {
if (n == 0) return (void)puts("1");
B.a[0][0] = b, B.a[1][0] = 2;
A.a[0][0] = b, A.a[0][1] = (d - (ull)b * b) / 4;
A.a[1][0] = 1, A.a[1][1] = 0;
B = fpow(A, n - 1) * B;
if (n & 1) printf("%llu\n", B.a[0][0]);
else printf("%llu\n", B.a[0][0] - !((ull)b * b == d));
} inline void init() {
read(b), read(d), read(n);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4002 [JLOI2015]有意义的字符串 特征根+矩阵快速幂的更多相关文章

  1. BZOJ4002 [JLOI2015]有意义的字符串 【数学 + 矩乘】

    题目链接 BZOJ4002 题解 容易想到\(\frac{b + \sqrt{d}}{2}\)是二次函数\(x^2 - bx + \frac{b^2 - d}{4} = 0\)的其中一根 那么就有 \ ...

  2. BZOJ4002 [JLOI2015]有意义的字符串

    据说这两场加起来只要170= =而这是最简单的题目了QAQ 看到$(\frac {b + \sqrt {d} } {2} )^n$,第一反应是共轭根式$(\frac {b - \sqrt {d} } ...

  3. [BZOJ4002][JLOI2015]有意义的字符串-[快速乘法+矩阵乘法]

    Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\fra ...

  4. bzoj4002 [JLOI2015]有意义的字符串 快速幂

    Description B 君有两个好朋友,他们叫宁宁和冉冉. 有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求((b+sqrt(D)/2)^N的整数部分,请输出结果 Mod 752844341 ...

  5. 【BZOJ4002】[JLOI2015]有意义的字符串 数学

    [BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...

  6. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  7. [JLOI2015]有意义的字符串

    4002: [JLOI2015]有意义的字符串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1000  Solved: 436[Submit][St ...

  8. BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法

    BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...

  9. 【bzoj4002】有意义的字符串

    Portal --> bzoj4002 Solution ​ 虽然说这题有点强行但是感觉还是挺妙的,给你通项让你反推数列的这种==有点毒 ​​ 补档时间 ​ 首先有一个东西叫做特征方程,我们可以 ...

随机推荐

  1. C++语法一二

    写在前面(C++和java的一些区别): (1)      C++中数组的定义为 int a[8];而在java中一般定义为int[] a=new int[8];如果定义的时候进行初始话,也可以缺省数 ...

  2. 大数据笔记(十四)——HBase的过滤器与Mapreduce

    一. HBase过滤器 1.列值过滤器 2.列名前缀过滤器 3.多个列名前缀过滤器 4.行键过滤器5.组合过滤器 package demo; import javax.swing.RowFilter; ...

  3. springmvc 读写分离

    推荐第四种:https://github.com/shawntime/shawn-rwdb 4种不方的读写分离实现方法 http://blog.csdn.net/lixiucheng005/artic ...

  4. 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_02 泛型_5_定义和使用含有泛型的接口

    定义泛型接口 Scanner的接口 接口的实现类.实现这个接口,规定数据类型为String类型 ArrayList是List接口的实现类 再看下List接口的源码 泛型实现类也定义为泛型 重写泛型的方 ...

  5. 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_08 Map集合_6_Map集合遍历键值对方式

    增强for

  6. C#怎么让字符串定长,不够的用空格补齐

    string.PadLeft 或者 string.PadRight  : string.PadLeft 表示如果一个字符串的长度小于指定的值,则在字符串的左侧(也就是前面)用指定的字符填充,直到字符串 ...

  7. 16/7/8_PHP-设置cookie会话控制(session与cookie)

    设置cookie PHP设置Cookie最常用的方法就是使用setcookie函数,setcookie具有7个可选参数,我们常用到的为前5个: name( Cookie名)可以通过$_COOKIE[' ...

  8. 【ABAP系列】SAP 关于出口(user-exit)MV50AFZ1的一些问题

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP 关于出口(user-ex ...

  9. LeetCode 94. Binary Tree Inorder Traversal 动态演示

    非递归的中序遍历,要用到一个stack class Solution { public: vector<int> inorderTraversal(TreeNode* root) { ve ...

  10. 存储过程SET XACT_ABORT ON

    设置事务回滚的当为ON时,如果你存储中的某个地方出了问题,整个事务中的语句都会回滚为OFF时,只回滚错误的地方