spark浅谈(2):SPARK核心编程
一、SPARK-CORE
1.spark核心模块是整个项目的基础。提供了分布式的任务分发,调度以及基本的IO功能,Spark使用基础的数据结构,叫做RDD(弹性分布式数据集),是一个逻辑的数据分区的集合,可以跨机器。RDD可以通过两种方式进行创建,一种是从外部的数据集引用数据,第二种方式是通过在现有的RDD上做数据转换。RDD抽象是通过语言集成的API来进行暴露,它简化了编程的复杂度,因为这种操纵RDD的方式类似于操纵本地数据集合
二、RDD变换(API阅读)
**
* A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable,
* partitioned collection of elements that can be operated on in parallel. This class contains the
* basic operations available on all RDDs, such as `map`, `filter`, and `persist`. In addition,
* [[org.apache.spark.rdd.PairRDDFunctions]] contains operations available only on RDDs of key-value
* pairs, such as `groupByKey` and `join`;
* [[org.apache.spark.rdd.DoubleRDDFunctions]] contains operations available only on RDDs of
* Doubles; and
* [[org.apache.spark.rdd.SequenceFileRDDFunctions]] contains operations available on RDDs that
* can be saved as SequenceFiles.
* All operations are automatically available on any RDD of the right type (e.g. RDD[(Int, Int)]
* through implicit.
*
* Internally, each RDD is characterized by five main properties:
*
* - A list of partitions
* - A function for computing each split
* - A list of dependencies on other RDDs
* - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
* - Optionally, a list of preferred locations to compute each split on (e.g. block locations for
* an HDFS file)
*
* All of the scheduling and execution in Spark is done based on these methods, allowing each RDD
* to implement its own way of computing itself. Indeed, users can implement custom RDDs (e.g. for
* reading data from a new storage system) by overriding these functions. Please refer to the
* <a href="http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf">Spark paper</a>
* for more details on RDD internals.
*/
1.RDD变换返回一个指向新RDD的指针并且允许你在RDD之间创建依赖,在依赖链条中的每个RDD都有一个计算数据的函数以及一个指向父RDD的指针。Spark是懒惰的,所以除非你调用一些除法任务创建以及执行的转换或者Action,否则什么都不干。
因此RDD变换不是一个数据集,而是在一个程序中的一个步骤,用来告诉如何获取数据以及怎么进行数据的相关的处理。
2.下面给出的是一个RDD变换列表
(0)接下来的试验都是以test.txt这个文件为试验对象的,其中test.txt中的内容为如下情况:
hello world1,
hello world2,
hello world3,
hello world4
(1)map(func):返回一个新的RDD(弹性分布式数据集),通过对这个RDD的每个元素素应用func函数形成一个新的RDD。
(2)flatMap(func):与map函数相似,但是每个输入项可以被映射为0个或者多个输出项(所以func函数应该返回一个Seq而不是一个单独的数据项)。通过对这个RDD的所有元素应用一个函数来返回一个新的RDD,然后将这个结果进行扁平化处理。
import org.apache.spark.{SparkConf, SparkContext}
object WordCountMapDemo {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setMaster("local").setAppName("WordCountMapDemo")
val sc = new SparkContext(conf)
val rdd1 = sc.textFile("E:/scala/test.txt")
val rdd2 = rdd1.flatMap(_.split(" "))
val rdd3 = rdd2.map((_,))
val rdd4 = rdd3.reduceByKey(_ + _);
val rdd5 =rdd4.collect()
rdd5.foreach(println)
}
}
(3)使用filter过滤器。返回通过选择函数返回true的源元素形成的新数据集。
package com.jd.www.wordCount
import org.apache.spark.{SparkConf, SparkContext}
object WordCountFilterDemo {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setAppName("WordCountFilterDemo").setMaster("local");
val sc = new SparkContext(conf)
val rdd1 = sc.textFile("E:/scala/test.txt")
val rdd2 = rdd1.flatMap(_.split(" "))
//过滤器
val rdd3 = rdd2.filter(_.startsWith("wor"))
val rdd4 = rdd3.map((_, ))
val rdd5 = rdd4.reduceByKey(_ + _)
val rdd6 = rdd5.collect()
rdd6.foreach(println)
}
}
(4)mapPartitions:通过将函数应用于此RDD的每个分区来返回新的RDD。与map类似,但在RDD的每个分区(块)上单独运行,因此当在类型T的RDD上运行时,func必须是Iterator <T> => Iterator <U>类型。
package com.jd.www.wordCount
import org.apache.spark.{SparkConf, SparkContext}
object WordCountMapPartitionsDemo {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setMaster("local").setAppName("WordCountFlatMapDemo")
val sc = new SparkContext(conf);
val rdd1 = sc.textFile("E:/scala/test.txt")
val rdd2 = rdd1.flatMap(_.split(" "));
val rdd3 = rdd2.mapPartitions(it=> {
import scala.collection.mutable.ArrayBuffer
val buf = new ArrayBuffer[String]()
for (e <- it) {
buf.+=("_" + e)
}
buf.iterator
}
)
val rdd4 = rdd3.map((_, ))
val rdd5 = rdd4.reduceByKey(_ + _)
val rdd6 = rdd5.collect()
rdd6.foreach(println)
}
}
(5)mapPartitionsWithIndex:通过对这个RDD的每个分区应用一个函数,然后返回一个新的RDD,同时对索引进行跟踪
import org.apache.spark.{SparkConf, SparkContext}
object WordCountMapPartitionsWithIndex {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setAppName("WordCountMapPartitionsWithIndex").setMaster("local[2]")
val sc = new SparkContext(conf)
val rdd1 = sc.textFile("e:/scala/test.txt",)//定义最小分区数
val rdd2 = rdd1.flatMap(_.split(" "))
val rdd3 = rdd2.mapPartitionsWithIndex((index,it)=>{
import scala.collection.mutable.ArrayBuffer
val tName = Thread.currentThread().getName
println(tName+":"+index+""+":mappartitions start")
val buf = new ArrayBuffer[String]()
for(e<-it){
buf.+=("_"+e)
}
buf.iterator
})
val rdd4 = rdd3.map((_,))
val rdd5 = rdd4.reduceByKey(_ + _)
rdd5.foreach(println)
}
}
(6)sample(withReplacement, fraction, seed):使用给定的随机数生成器种子,在有或没有替换的情况下对数据的一小部分进行采样。
spark浅谈(2):SPARK核心编程的更多相关文章
- 浅谈Apache Spark的6个发光点(CSDN)
Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析.Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发开发,其核心部分的代码只有63个Scala文件 ...
- spark浅谈(1):RDD
一.弹性分布式数据集 1.弹性分布式数据集(RDD)是spark数据结构的基础.它是一个不可变的分布式对象的集合,RDD中的每个数据集都被划分为一个个逻辑分区,每个分区可以在集群上的不同节点上进行计算 ...
- spark浅谈(3):
一.shuffle操作 1.spark中特定的操作会触发我们都知道的shuffle事件,shuffle是spark进行数据重新分布的机制,这通常涉及跨执行程序和机器来赋值数据,使得混洗称为复杂而且昂贵 ...
- 浅谈TCP/IP网络编程中socket的行为
我认为,想要熟练掌握Linux下的TCP/IP网络编程,至少有三个层面的知识需要熟悉: 1. TCP/IP协议(如连接的建立和终止.重传和确认.滑动窗口和拥塞控制等等) 2. Socket I/O系统 ...
- 浅谈C#关于AOP编程的学习总结
难得在这样一个节日里给写出一篇博客,却没有佳人相约,没办法,这就是一个程(dan)序(shen)猿(gou)的真实生活情景,每天除了coding还是coding.唉..污染各位看官的眼了.好吧,进入正 ...
- 新手浅谈C#Task异步编程
Task是微软在.net framework 4.0发布的新的异步编程的利器,当然4.5新增了async.await,这儿我们先说Task相关. 在实际编程中,我们用的较多的是Task.Task.Fa ...
- 浅谈Python中函数式编程、面向对象编程以及古怪的PythonIC
1.函数式编程作为结构化编程的一种,正在受到越来越多的重视.那么什么事函数式编程呢? 在维基百科中给出了详细的定义,函数式编程又称泛函数编程,是一种编程规范,它将函数运算视为数学上的函数计算.简单的来 ...
- 浅谈SOA面向服务化编程架构(dubbo)
dubbo 是阿里系的技术.并非淘宝系的技术啦,淘宝系的分布式服务治理框架式HSF啦 ,只闻其声,不能见其物.而dubbo是阿里开源的一个SOA服务治理解决方案,dubbo本身 集成了监控中心,注 ...
- 01 浅谈c++及面向对象编程
参考链接: 学习完c++但是对c++面向对象编程还是比较模糊,现在花时间总体来总结一下: c++中的对象是使用类来定义的,下面先重点讲一下类的概念. 说到类就要先说一下类的三种特性:封装,继承,多态. ...
随机推荐
- 有了二叉查找树、平衡树(AVL)为啥还需要红黑树?
序言 二叉查找树的缺点 平衡二叉树 虽然平衡树解决了二叉查找树退化为近似链表的缺点,能够把查找时间控制在 O(logn),不过却不是最佳的,因为平衡树要求每个节点的左子树和右子树的高度差至多等于1,这 ...
- luogu 5468 [NOI2019]回家路线 最短路/暴力
想写一个 70 pts 算法,结果数据水,直接就切了 最短路: // luogu-judger-enable-o2 #include<bits/stdc++.h> using namesp ...
- [USACO19JAN]Shortcut题解
本题算法:最短路树 这是个啥玩意呢,就是对于一个图,构造一棵树,使从源点开始的单源最短路径与原图一模一样.怎么做呢,跑一边Dijkstra,然后对于一个点u,枚举它的边,设当前的边为cur_edge, ...
- 大数据笔记(九)——Mapreduce的高级特性(B)
二.排序 对象排序 员工数据 Employee.java ----> 作为key2输出 需求:按照部门和薪水升序排列 Employee.java package mr.object; impo ...
- multipages-generator今日发布?!妈妈再也不用担心移动端h5网站搭建了!
本文适合的读者???? 现在在手淘,京东,今日头条,美柚等过亿用户的手机app中的,都常见h5网页,他们有更新快,灵活,便于分享和传播的特性.这里有他们中的几个h5的例子:(手淘,美柚).这些a ...
- Unity各版本差异
Unity各版本差异 version unity 5.x 4.x 2017 差异 特点 首先放出unity的下载地址,然后再慢慢分析各个版本.再者unity可以多个版本共存,只要不放在同一目录下. ...
- Junit单元测试的使用
这里拿Dynamic Web Project项目来演示,首先创建一个Dynamic Web Project项目,起名,点next, 继续点next, 将web.xml文件勾选,finish, 接下来在 ...
- linux基本目录
/ 根目录: dev : 存放抽象硬件 ib : 存放系统库文件 sbin : 存放特权级二进制文件 var : 存放经常变化的文件 home : 普通用户目录 etc : 存放配置文件目录 /etc ...
- java开发客户端发送请求到服务器端出现这样:JSON parse error: Unexpected character ('}' (code 125)): was expecting
org.springframework.http.converter.HttpMessageNotReadableException: JSON parse error: Unexpected cha ...
- 创建虚拟环境virtualenv的小问题
在创建完虚拟环境后,settings里面虚拟环境的python编译器不是虚拟的,而是全局的,这个时候. 由于创建的虚拟环境的存储地址默认是在c盘. 自定义虚拟环境的存储地址步骤: 第一步:在配置环境变 ...