BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417
(luogu)https://www.luogu.org/problemnew/show/P3990
题解: 一看就是矩乘优化dp.
每次跳奇数列?那么我们可以将列两两分组,以两列为一组作为矩阵要记录的状态。一个元素位于组内第一列说明它不可能再跳到这一组的第二列(为了避免算重)。转移矩阵的构造见代码。
那么我们用矩阵来表示转移方程: 设向量\(F[i]\)表示状态,\(A\)表示转移矩阵,\(F[i]=\sum^{i-1}_{j=1}F[j]\times A\)
作差分,\(F[i]-F[i-1]=F[i-1]\times A\), \(F[i]=F[i-1]\times (A+I)\)
注意这个递推式成立的条件是\(i\ge 3\), 即必须预处理出\(F[2]\)的值而不可以通过\(F[1]\)得出(想一想,为什么)。
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int P = 30011;
const int N = 50;
struct Matrix
{
int n;
llong a[(N<<1)+3][(N<<1)+3];
void output() {for(int i=1; i<=n; i++) {for(int j=1; j<=n; j++) printf("%lld ",a[i][j]); puts("");}}
void clear(int _n) {n = _n; for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) a[i][j] = 0ll;}
void unitize() {for(int i=1; i<=n; i++) a[i][i] = 1ll;}
Matrix operator *(const Matrix &arg) const
{
Matrix ret; ret.clear(n);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
for(int k=1; k<=n; k++)
{
ret.a[i][k] = (ret.a[i][k]+a[i][j]*arg.a[j][k])%P;
}
}
}
return ret;
}
} trans,cur,ans;
int n;
llong m;
void mquickpow(llong y)
{
cur = trans;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ans = ans*cur;}
cur = cur*cur;
}
}
int main()
{
scanf("%d%lld",&n,&m);
trans.clear(n<<1); cur.clear(n<<1); ans.clear(n<<1);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
if(j>=i-1 && j<=i+1)
{
trans.a[i][j+n]++;
trans.a[i+n][j]++;
}
}
}
for(int i=1; i<=n+n; i++)
{
for(int j=1; j<=n; j++)
{
for(int k=1; k<=n; k++)
{
if(k>=j-1 && k<=j+1)
{
trans.a[i][k+n] += trans.a[i][j];
}
}
}
}
ans = trans;
for(int i=1; i<=n+n; i++) trans.a[i][i]++;
mquickpow((m-3)>>1);
if(m&1) printf("%lld\n",(ans.a[1][n]+ans.a[n+1][n]+ans.a[n+2][n])%P);
else printf("%lld\n",(ans.a[1][n+n]+ans.a[n+1][n+n]+ans.a[n+2][n+n])%P);
return 0;
}
BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)的更多相关文章
- Luogu P3990 [SHOI2013]超级跳马
这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...
- 洛谷 P3990 [SHOI2013]超级跳马 解题报告
P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...
- 【BZOJ 3326】[Scoi2013]数数 数位dp+矩阵乘法优化
挺好的数位dp……先说一下我个人的做法:经过观察,发现这题按照以往的思路从后往前递增,不怎么好推,然后我就大胆猜想,从前往后推,发现很好推啊,维护四个变量,从开始位置到现在有了i个数 f[i]:所有数 ...
- P3990 [SHOI2013]超级跳马
传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...
- [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- 【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)
2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种 ...
- 【BZOJ】1009: [HNOI2008]GT考试(dp+矩阵乘法+kmp+神题)
http://www.lydsy.com/JudgeOnline/problem.php?id=1009 好神的题orzzzzzzzzzz 首先我是连递推方程都想不出的人...一直想用组合来搞..看来 ...
- bzoj 4818: [Sdoi2017]序列计数【容斥原理+dp+矩阵乘法】
被空间卡的好惨啊---- 参考:http://blog.csdn.net/coldef/article/details/70305596 容斥,\( ans=ans_{没有限制}-ans{没有质数} ...
- [BZOJ 4417][Shoi2013]超级跳马
4417: [Shoi2013]超级跳马 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 379 Solved: 230[Submit][Status ...
随机推荐
- Spring MVC 中使用AOP 进行事务管理--XML配置实现
1.今天写一篇使用AOP进行事务管理的示例,关于事务首先需要了解以下几点 (1)事务的特性 原子性(Atomicity):事务是一个原子操作,由一系列动作组成.事务的原子性确保动作要么全部完成,要么完 ...
- Spring MVC 跳转页面的方法
转一个Spring MVC 跳转页面的方法,楼主总结的很全面,留着备用. https://blog.csdn.net/c_royi/article/details/78528758
- [转帖]紫光与群联联盟,长江存储NAND+群联主控+紫光品牌SSD可期
紫光与群联联盟,长江存储NAND+群联主控+紫光品牌SSD可期 全国产的 SSD https://baijiahao.baidu.com/s?id=1620789429952097018&wf ...
- [转帖]PostgreSQL pg_dump&psql 数据的备份与恢复
PostgreSQL pg_dump&psql 数据的备份与恢复 https://www.cnblogs.com/chjbbs/p/6480687.html 文章写的挺好 今天试了下 挺不 ...
- python 压缩文件(解决压缩路径问题)
#压缩文件 def Zip_files(): datapath = filepath # 证据路径 file_newname = datapath + '.zip' # 压缩文件的名字 log.deb ...
- python 利用 smtplib发邮件
import smtplib from email.mime.text import MIMEText title = "request build error" content ...
- JS获取指定范围随机数
常用取整数的方法 : Math.floor(Math.random() * (max - min + 1)) + min 一步步来解析: Math.random() 函数返回一个浮点, 伪随机数在范 ...
- qt tableview列头背景颜色设置
设置表列头背景颜色 QHeaderView::section { background: rgb(255, 255, 127); }
- 基于Spring Cloud 几行配置完成单点登录开发
单点登录概念 单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. ...
- 第一节,搭建openwrt开发环境
一,安装VMware虚拟机或者VirtualBox虚拟机 安装过程就不在此赘述了.附上百度搜索来的链接,供大家参考. https://baijiahao.baidu.com/s?id=16233731 ...