Can you answer these queries? HDU - 4027 (线段树,区间开平方,区间求和)
A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use our secret weapon to eliminate the battleships. Each of the battleships can be marked a value of endurance. For every attack of our secret weapon, it could decrease the endurance of a consecutive part of battleships by make their endurance to the square root of it original value of endurance. During the series of attack of our secret weapon, the commander wants to evaluate the effect of the weapon, so he asks you for help.
You are asked to answer the queries that the sum of the endurance of a consecutive part of the battleship line.
Notice that the square root operation should be rounded down to integer.
Input
The input contains several test cases, terminated by EOF.
For each test case, the first line contains a single integer N, denoting there are N battleships of evil in a line. (1 <= N <= 100000)
The second line contains N integers Ei, indicating the endurance value of each battleship from the beginning of the line to the end. You can assume that the sum of all endurance value is less than 2 63.
The next line contains an integer M, denoting the number of actions and queries. (1 <= M <= 100000)
For the following M lines, each line contains three integers T, X and Y. The T=0 denoting the action of the secret weapon, which will decrease the endurance value of the battleships between the X-th and Y-th battleship, inclusive. The T=1 denoting the query of the commander which ask for the sum of the endurance value of the battleship between X-th and Y-th, inclusive.
Output
For each test case, print the case number at the first line. Then print one line for each query. And remember follow a blank line after each test case.
Sample Input
10
1 2 3 4 5 6 7 8 9 10
5
0 1 10
1 1 10
1 1 5
0 5 8
1 4 8
Sample Output
Case #1:
19
7
6
题意:
给你一个含有n个数的数组,m次操作
操作0,给你一个区间l, r 对区间内的每一个数开方。
操作1,输出一个询问区间的数值sum和。
思路:
我们看到数据范围是小于等于2^63 ,我们通过本地开方测试可以发现,
数组中的每一个数,最多开方7次,就可以到1 ,, 而1无论咋开方都还是1 ,就是不会改变的数值了。
那么我们用线段树维护区间的sum和,
对于更新,我们暴力更新到线段树的每一个叶子节点,求和就正常的求和。
这里有一点必须的优化就是 如果线段树一个区间的sum和等于区间的长度,这个得出这个区间中的每一个值都是1,那么直接return,不去更新,因为更新是没意义的。
本题2个坑点,::
1,给的区间x,y ,并不是 x<y 的,有可能 x>y 此处wa多次。
2、题面讲到每一个样例多输出一个回车,刚开始没看到。 此处pe一次。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 100010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n, m;
int root;
ll a[maxn];// 初始点权
ll wt[maxn];// 新建编号点权。
int cnt;// 编号用的变量
int top[maxn];// 所在重链的顶点编号
int id[maxn];//节点的新编号。
std::vector<int> son[maxn];
int SZ[maxn];// 子数大小
int wson[maxn];// 重儿子
int fa[maxn];// 父节点
int dep[maxn];// 节点的深度
struct node
{
int l,r;
ll sum;
ll laze;
}segment_tree[maxn<<2];
void pushup(int rt)
{
segment_tree[rt].sum=(segment_tree[rt<<1].sum+segment_tree[rt<<1|1].sum);
}
void build(int rt,int l,int r)
{
segment_tree[rt].l=l;
segment_tree[rt].r=r;
segment_tree[rt].laze=0;
if(l==r)
{
segment_tree[rt].sum=wt[l];
return;
}
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
pushup(rt);
}
void update(int rt,int l,int r)
{
if((segment_tree[rt].l>=l&&segment_tree[rt].r<=r)&&segment_tree[rt].sum==(segment_tree[rt].r-segment_tree[rt].l+1))
{
return ;
}
if(segment_tree[rt].l==segment_tree[rt].r)
{
segment_tree[rt].sum=sqrt(segment_tree[rt].sum);
return ;
}
int mid=(segment_tree[rt].l+segment_tree[rt].r)>>1;
if(mid>=l)
{
update(rt<<1,l,r);
}
if(mid<r)
{
update(rt<<1|1,l,r);
}
pushup(rt);
}
ll query(int rt,int l,int r)
{
if(segment_tree[rt].l>=l&&segment_tree[rt].r<=r)
{
ll res=0ll;
res+=segment_tree[rt].sum;
return res;
}
int mid=(segment_tree[rt].l+segment_tree[rt].r)>>1;
ll res=0ll;
if(mid>=l)
{
res+=query(rt<<1,l,r);
}
if(mid<r)
{
res+=query(rt<<1|1,l,r);
}
return res;
}
int main()
{
// freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
// freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
int cas=1;
while(cin>>n)
{
cout<<"Case #"<<cas<<":"<<endl;
repd(i,1,n)
{
cin>>wt[i];
}
build(1,1,n);
cin>>m;
int op;
int x,y;
while(m--)
{
cin>>op>>x>>y;
if(x>y)
{
swap(x,y);
}
if(!op)
{
update(1,x,y);
}else
{
cout<<query(1,x,y)<<endl;
}
}
cout<<endl;
cas++;
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Can you answer these queries? HDU - 4027 (线段树,区间开平方,区间求和)的更多相关文章
- Can you answer these queries? HDU 4027 线段树
Can you answer these queries? HDU 4027 线段树 题意 是说有从1到编号的船,每个船都有自己战斗值,然后我方有一个秘密武器,可以使得从一段编号内的船的战斗值变为原来 ...
- V - Can you answer these queries? HDU - 4027 线段树 暴力
V - Can you answer these queries? HDU - 4027 这个题目开始没什么思路,因为不知道要怎么去区间更新这个开根号. 然后稍微看了一下题解,因为每一个数开根号最多开 ...
- hdu 1166线段树 单点更新 区间求和
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- spoj gss2 : Can you answer these queries II 离线&&线段树
1557. Can you answer these queries II Problem code: GSS2 Being a completist and a simplist, kid Yang ...
- SPOJ GSS3-Can you answer these queries III-分治+线段树区间合并
Can you answer these queries III SPOJ - GSS3 这道题和洛谷的小白逛公园一样的题目. 传送门: 洛谷 P4513 小白逛公园-区间最大子段和-分治+线段树区间 ...
- SPOJ GSS2 - Can you answer these queries II(线段树 区间修改+区间查询)(后缀和)
GSS2 - Can you answer these queries II #tree Being a completist and a simplist, kid Yang Zhe cannot ...
- Can you answer these queries III(线段树)
Can you answer these queries III(luogu) Description 维护一个长度为n的序列A,进行q次询问或操作 0 x y:把Ax改为y 1 x y:询问区间[l ...
- hdu4027Can you answer these queries?【线段树】
A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use ...
- 2018.10.16 spoj Can you answer these queries V(线段树)
传送门 线段树经典题. 就是让你求左端点在[l1,r1][l1,r1][l1,r1]之间,右端点在[l2,r2][l2,r2][l2,r2]之间且满足l1≤l2,r1≤r2l1\le l2,r1 \l ...
随机推荐
- ansible使用sudo
方式一. 1.配置资源清单inventory文件 [root@test1 ~]# cat >/etc/ansible/hosts <<EOF [k8s] 192.168.0.92 a ...
- Java多线程(2):线程加入/join()
线程加入 join()方法,等待其他线程终止.在当前线程(主线程)中调用另一个线程(子线程)的join()方法,则当前线程转入阻塞状态,直到另一个线程运行结束,当前线程再由阻塞转为就绪状态. 也就是主 ...
- jdk1.8-Vector
一:先看下类的继承关系 UML图如下: 继承关系: ))) ))) grow(minCapacity)) ? ) newCapacity = minCapacity) ) , elementData, ...
- @Validated和@Valid校验参数、级联属性、List
@Validated和@Valid的区别 在Controller中校验方法参数时,使用@Valid和@Validated并无特殊差异(若不需要分组校验的话): @Valid:标准JSR-303规范的标 ...
- CornerNet 算法笔记
论文名称:CornerNet: Detecting Objects as Paired Keypoints 论文链接:https://arxiv.org/abs/1808.01244 代码链接:htt ...
- Vi或者Vim下按了ctrl+s后终端卡住了咋办?
在Vi或者Vim下按了ctrl+s后终端卡住了咋办? 习惯了在windows下写程序,也习惯了按ctrl+s 保存代码. 在用vim的时候,也习惯性的按ctrl+s结果就是如同终端死掉了一样. 原因: ...
- Foxmail:导入联系人
打开“Foxmail”之后,如下图所示: 接下来,在左下角找到箭头指示的位置处,点击此处: 接下来,在邮箱的右上角找到如图所示的位置,鼠标点击此处: 点击之后,如下图所示,找到“导入”: 点击“导入& ...
- 【DSP开发】【计算机视觉】TI 视觉软件开发套件ADAS
关键字:TI 视觉软件开发套件 ADAS 日前,德州仪器 (TI) 宣布推出其视觉软件开发套件(SDK),从而为开发人员提供了一款灵活的框架.一组丰富齐全的硬件设备驱动程序和一套适用的开发工具,可 ...
- 【VS开发】内存泄漏相关问题
之所以撰写这篇文章是因为前段时间花费了很大的精力在已经成熟的代码上再去处理memory leak问题.写此的目的是希望我们应该养成良好的编码习惯,尽可能的避免这样的问题,因为当你对着一大片的代码再去处 ...
- 【Linux开发】linux设备驱动归纳总结(四):4.单处理器下的竞态和并发
linux设备驱动归纳总结(四):4.单处理器下的竞态和并发 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ...