BZOJ2839 集合计数 二项式反演
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=2839
题解
二项式反演板子题。
类似于一般的容斥,我们发现恰好 \(k\) 个不怎么好求,但是至少 \(k\) 个还是很好求的。
考虑固定 \(k\) 个数必须存在,然后剩下的 \(n-k\) 个数的集合的子集中随意选择(不能不选),所以至少 \(k\) 个的方案就是 \(\binom nk (2^{2^{n-k}}-1)\)。
令 \(f(k)\) 表示钦定了至少 \(k\) 个的方案,\(g(k)\) 表示恰好 \(k\) 个的方案。可以发现很显然 \(f(k) = \sum\limits_{i=k}^n \binom ik g(i)\)。
所以就可以直接二项式反演了。
下面是代码,\(2^{2^k}\) 可以 \(O(n)\) 预处理,因此总的时间复杂度为 \(O(n)\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 1000000 + 7;
const int P = 1e9 + 7;
int n, k;
int f[N], pw[N];
int fac[N], inv[N], ifac[N];
inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
}
inline void ycl() {
fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % P;
inv[1] = 1; for (int i = 2; i <= n; ++i) inv[i] = (ll)(P - P / i) * inv[P % i] % P;
ifac[0] = 1; for (int i = 1; i <= n; ++i) ifac[i] = (ll)ifac[i - 1] * inv[i] % P;
pw[0] = 2; for (int i = 1; i <= n; ++i) pw[i] = (ll)pw[i - 1] * pw[i - 1] % P;
}
inline int C(int x, int y) {
if (x < y) return 0;
return (ll)fac[x] * ifac[y] % P * ifac[x - y] % P;
}
inline void work() {
ycl();
for (int i = 0; i <= n; ++i) f[i] = (ll)C(n, i) * (pw[n - i] + P - 1) % P;
int ans = 0;
for (int i = k; i <= n; ++i)
if ((i - k) & 1) sadd(ans, P - (ll)C(i, k) * f[i] % P);
else sadd(ans, (ll)C(i, k) * f[i] % P);
printf("%d\n", ans);
}
inline void init() {
read(n), read(k);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
BZOJ2839 集合计数 二项式反演的更多相关文章
- BZOJ 2839: 集合计数(二项式反演)
传送门 解题思路 设\(f(k)\)为交集元素个数为\(k\)的方案数.发现我们并不能直接求出\(f(k)\),就考虑容斥之类的东西,容斥首先要扩大限制,再设\(g(k)\)表示至少有\(k\)个交集 ...
- bzoj 2839 集合计数 —— 二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...
- bzoj 2839 集合计数——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...
- BZOJ2839集合计数
题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~ ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- bzoj2839 集合计数
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser Logout 捐赠本站 2839: 集合计数 Time ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
随机推荐
- windows系统如何查看物理cpu核数,内存型号等
首先,我们需要打开命令行模式,利用win+r键打开运行,输入cmd回车即会出现 然后在命令行界面输入wmic进入命令行系统管理执行脚本界面 然后我们通过cpu get *可以查看cpu的具 ...
- (4)Linux(ubuntu)下配置Opencv3.1.0开发环境的详细步骤
Ubuntu下配置opencv3.1.0开发环境 1.最近工作上用到在Ubuntu下基于QT和opencv库开发应用软件(计算机视觉处理方面),特把opencv的配置过程详细记录,以供分享 2.步骤说 ...
- 20180708-Java运算符
public class Test{ public static void main(String args[]){ int a = 10; int b = 20; int c = 25; int d ...
- [java] [error] java.lang.OutOfMemoryError: unable to create new native thread
前言 最近公司的服务器出现了oom的报错,经过一番排查,终于找到了原因.写下这篇博客是为了记录下查找的过程,也是为了帮助那些跟我门遇到的情况相同的人可以更快的寻找到答案. 环境 系统:linux(ce ...
- Linux学习篇(四)-Linux 文件管理命令详解
rootfs:根文件系统,Root FileSystem 的简称. Linux 文件命名规则 长度不超过255个字符. 不能使用/当文件名. 严格区分大小写. Linux 目录简介 / 根目录 /bo ...
- 新手如何创建一个vue项目 ---vue---新手创建第一个项目
1.第一步安装node.js https://nodejs.org/en/ 前期可以下载软件包,后期熟练以后可以通过nvm进行 Node的版本切换以及升级 然后window+r 输入cmd 打开命令 ...
- spring4.1.8扩展实战之六:注册bean到spring容器(BeanDefinitionRegistryPostProcessor接口)
本章是<spring4.1.8扩展实战>系列的第六篇,目标是学习如何通过自己写代码的方式,向spring容器中注册bean: 原文地址:https://blog.csdn.net/boli ...
- Oracle--索引视图序列等对象
---恢复内容开始--- 索引 与表类似,不仅需要在DD中保存索引的定义,还需要在表空间为它分配实际的存储空间. 将索引和对应的表分别存放在不同硬盘的不同表空间中能够提高查询的速度,因为Oracle能 ...
- pandas dataframe 一行变多行 (query pv统计term pv)
关键字: 用jieba切词 用expand 一列变多列 用stack 列转行 用group by + aggr 相同term的pv求和 上效果: query pv 今日新鲜事 今日头条 北京天气 上海 ...
- Macaca的Python的api整理
整理了下Macaca的API,做成思维脑图,方便阅览. WebDriver 安装 pip install wd git clone https://github.com/macacajs/wd.py. ...