Description

奶牛想证明他们是聪明而风趣的。为此,贝西筹备了一个奶牛博览会,她已经对N头奶牛进行了面试,确定了每头奶牛的智商和情商。

贝西有权选择让哪些奶牛参加展览。由于负的智商或情商会造成负面效果,所以贝西不希望出展奶牛的智商之和小于零,或情商之和小于零。满足这两个条件下,她希望出展奶牛的智商与情商之和越大越好,请帮助贝西求出这个最大值。

Input Format

第一行:一个整数N,表示奶牛的数量,1 ≤ N ≤ 100

第二行到第N + 1行:第i + 1行有两个用空格分开的整数:Si和Fi,分别表示第i头奶牛的智商和情商,−1000 ≤ Si ≤ 1000,−1000 ≤ Fi ≤ 1000

Output Format

第一行:单个整数,表示情商与智商和的最大值。贝西可以不让任何奶牛参加展览,如果这样应该输出0

Sample Input

5

-5 7

8 -6

6 -3

2 1

-8 -5

Sample Output

8

Hint

(选择 1,3,4 号奶牛,此时智商和为−5 + 6 + 2 = 3,情商和为7 − 3 + 1 = 5。加入 2 号奶牛可使总和提升到10,不过由于情商和变成负的了,所以是不允许的)

Solution

这题很容易想到DP,乍一看有点像01背包,每个牛都有选或者不选,但是仔细分析会发现这样不行。

在转移的过程中很难考虑智商以及情商大于0,简单来说就是有后效性。

那么又看到情商或智商绝对值小于1000,答案最大只能为200000,想到可以使dp[i]表示答案为i的方案是否存在,

但也很难判断智商和情商大于0,所以不妨将答案拆开为2部分,即

dp[i]表示情商和达到i的最大智商为多少

这个地方很关键,理解了这道题就简单了,

情商和为负数的情况也要考虑所以数组下标要向右移一段距离即加上一个常数,

情商最大和为100000,数组就开200000(正负各100000)

然后发现变成了01背包,不过要注意情商是恰好为i而不是不是最大为i,所以开始要把dp数组初始化为负无穷,然后dp[0+M]=0(这里M为一个常数),普通的01背包是初始化为0,原因这里不展开

状态转移的时候,要对w[i]的正负分情况转移,为正倒着做,为负正着做

最后答案就为max{dp[i+M]+i},0<=i<=M且dp[i+M]>0,i为情商dp[i+m]为智商

Code

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int n, m, w[110], v[110], dp[200010]; int main()
{
freopen("in.txt", "r", stdin);
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d%d", &w[i], &v[i]);
if (w[i] > 0) m += w[i];
}
memset(dp, -127 / 2, sizeof(dp));
dp[m] = 0;
m *= 2;
for (int i = 1; i <= n; ++i) {
if (w[i] > 0)
for (int j = m; j >= w[i]; j--)
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
else for (int j = 0; j <= m + w[i]; j++)
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
}
int Ans = 0;
m /= 2;
for (int i = 0; i <= m; ++i)
if (dp[i + m] > 0) Ans = max(Ans, dp[i + m] + i);
printf("%d\n", Ans);
return 0;
}

USACO奶牛博览会(DP)的更多相关文章

  1. [USACO]奶牛博览会(DP)

    Description 奶牛想证明他们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N头奶牛进行了面试,确定了每头奶牛的智商和情商. 贝西有权选择让哪些奶牛参加展览.由于负的智商或情商会造成 ...

  2. [USACO]奶牛会展(背包)

    [USACO]奶牛会展 题目背景 奶牛想证明它们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N 头奶牛进行 了面试,确定了每头奶牛的智商和情商. 题目描述 贝西有权选择让哪些奶牛参加展览. ...

  3. 奶牛抗议 DP 树状数组

    奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...

  4. USACO 奶牛抗议 Generic Cow Protests

    USACO 奶牛抗议 Generic Cow Protests Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望 ...

  5. P2340 奶牛会展 DP 背包

    P2340 奶牛会展 DP \(n\)头牛,每头牛有智商\(s[i]\)情商\(f[i]\),问如何从中选择几头牛使得智商情商之和最大 且 情商之和.智商之和非负 \(n\le 400,-10^3\l ...

  6. [USACO]奶牛抗议(DP+树状数组+离散化)

    Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望奶牛在抗议时保持理性,为此,他打算将所有的奶牛隔离成 若干个小组 ...

  7. BZOJ_1616_[Usaco2008_Mar]_Cow_Travelling_游荡的奶牛_(DP)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1616 给出一张图,有些点不能走,给出起始点和结束点,以及时间,求在该时间到达结束点的方案数. ...

  8. usaco 奶牛接力

    Description 为增强体质,约翰决定举办一场奶牛接力跑比赛.比赛现场有一些接力位置,这些位置间有T条路连接,第i条路的长度为Li. 有N头奶牛需要参加比赛,领头的奶牛从位置S出发,她会按照你的 ...

  9. [Usaco2008 Mar]Cow Travelling游荡的奶牛[简单DP]

    Description 奶牛们在被划分成N行M列(2 <= N <= 100; 2 <= M <= 100)的草地上游走,试图找到整块草地中最美味的牧草.Farmer John ...

随机推荐

  1. 201521123051《Java程序设计》第十四周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多数据库相关内容. 2. 书面作业 1. MySQL数据库基本操作 建立数据库,将自己的姓名.学号作为一条记录插入.(截图,需出现自 ...

  2. 201521123068 《java程序设计》 第10周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 2. 书面作业 本次PTA作业题集异常.多线程 1.finally 题目4-2 1.1 截图你的提交结果(出 ...

  3. Spring第一篇【介绍Spring、引入Spring、Spring六大模块】

    前言 前面已经学习了Struts2和Hibernate框架了.接下来学习的是Spring框架-本博文主要是引入Spring框架- Spring介绍 Spring诞生: 创建Spring的目的就是用来替 ...

  4. Tomcat【介绍Tomcat、结构目录、虚拟目录、临时域名、虚拟主机、体系结构】

    什么是Tomcat Tomcat简单的说就是一个运行JAVA的网络服务器,底层是Socket的一个程序,它也是JSP和Serlvet的一个容器. 为什么我们需要用到Tomcat 如果你学过html,c ...

  5. js中判断undefined类型

    typeof 运算符返回一个用来表示表达式的数据类型的字符串.可能的字符串有:"number"."string"."boolean".&qu ...

  6. Flex布局介绍

    Flex 是 Flexible Box 的缩写,意为"弹性布局",用来为盒状模型提供最大的灵活性 任何一个容器都可以指定为 Flex 布局. .box{ display: -web ...

  7. 【个人笔记】《知了堂》express模块

    NPM  包管理器 Node package module  ==>简称npm 类似的bower 安装express 1.全局Npm install express -g 2.项目中安装 项目中 ...

  8. JDFS:一款分布式文件管理系统,第四篇(流式云存储续篇)

    一 前言 本篇博客是JDFS系列博客的第四篇,从最初简单的上传.下载,到后来加入分布式功能,背后经历了大量的调试,尤其当实验的虚拟计算结点数目增加后,一些潜在的隐藏很深的bug就陆续爆发.在此之前笔者 ...

  9. 搬瓦工修改自带ss密码和端口

    如果是从控制面板那里直接点击安装的ss,只需要修改这两个文件: 修改端口 /root/.kiwivm-shadowsocks-port修改密码 /root/.kiwivm-shadowsocks-pa ...

  10. struts2---自定义类型转换器

    从servlet我们知道从页面获取到的参数都是string类型,但是struts2中基本的数据类型,它可以自动帮我们转化为其对应的包装类,就像获取到123,可以自动转化为Integer,但是比如201 ...