题目描述: 
有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N。由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间。这个邮递员每次只能带一样东西。求送完这N-1样东西并且最终回到邮局最少需要多少时间。

输入格式: 
第一行包括两个整数N和M。 
第2到第M+1行,每行三个数字U、V、W,表示从A到B有一条需要W时间的道路。 满足1<=U,V<=N,1<=W<=10000,输入保证任意两点都能互相到达。

输出格式: 
输出仅一行,包含一个整数,为最少需要的时间。

数据规模: 
对于30%的数据,有1≤N≤200; 
对于100%的数据,有1≤N≤1000,1≤M≤100000。

思路 :

这是一道最短路问题,SPFA算法可以很好的解决。但是题目特殊在最后需要的并不是单一两点间的最短路,而是1到2~N每个点来回最短路程的总和,所以需要以1点为起点做一次SPFA,得到1点到每个点的最短路。而后处理每个点到1之间的最短路。可以将边反向,以求得N个点到1的最短距离,首先运用三个数组U,V,W记录输入的参数,在跑完1到每个点的最短路后,清空vis数组和存储路径信息的邻接表,初始化dis数组,(Tips:各位初次写没初始化的萌新,这里的初始化很重要!!),然后对U,V,W进行遍历,本来为U->V边权为W的路径在这里方向进行反向存储了!!现在要存储的应该是V->U边权为W的路径。这样再一次以1为起点进行一次SPFA,便可以的到每个点到1的最短路(Tips:这里相当于将所有路径反向,也就相当于把1作为终点去找每个点为起点时的返程的最短路

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
;
;
int n,m,cnt,ans,hd[N],dis[N],a[M],b[M],c[M];
bool inq[N];
queue<int>q;
struct edge
{
    int to,nxt,val;
}v[M];
void addedge(int x,int y,int z)
{
    ++cnt;
    v[cnt].to=y;
    v[cnt].nxt=hd[x];
    v[cnt].val=z;
    hd[x]=cnt;
}
int main()
{
    scanf("%d%d",&n,&m);
    ;i<=m;i++)
    {
        scanf("%d%d%d",&a[i],&b[i],&c[i]);
        addedge(a[i],b[i],c[i]);
    }
    memset(dis,0x3f,sizeof(dis));
    dis[]=;
    q.push();
    inq[]=;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        inq[u]=;
        for(int i=hd[u];i;i=v[i].nxt)
            if(dis[v[i].to]>dis[u]+v[i].val)
            {
                dis[v[i].to]=dis[u]+v[i].val;
                if(!inq[v[i].to])
                {
                    inq[v[i].to]=;
                    q.push(v[i].to);
                }
            }
    }
    ;i<=n;i++)
        ans+=dis[i];
    memset(v,,sizeof(v));
    memset(hd,,sizeof(hd));
    cnt=;
    ;i<=m;i++)
        addedge(b[i],a[i],c[i]);
    memset(dis,0x3f,sizeof(dis));
    dis[]=;
    q.push();
    inq[]=;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        inq[u]=;
        for(int i=hd[u];i;i=v[i].nxt)
            if(dis[v[i].to]>dis[u]+v[i].val)
            {
                dis[v[i].to]=dis[u]+v[i].val;
                if(!inq[v[i].to])
                {
                    inq[v[i].to]=;
                    q.push(v[i].to);
                }
            }
    }
    ;i<=n;i++)
        ans+=dis[i];
    printf("%d\n",ans);
    ;
}  

P1629 邮递员送信的更多相关文章

  1. 洛谷——P1629 邮递员送信

    P1629 邮递员送信 题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要 ...

  2. Luogu P1629 邮递员送信

    P1629 邮递员送信 题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要 ...

  3. 洛谷 P1629 邮递员送信 题解

    P1629 邮递员送信 题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要 ...

  4. 洛谷 P1629 邮递员送信-反向建边

    洛谷 P1629 邮递员送信 题目描述: 有一个邮递员要送东西,邮局在节点 11.他总共要送 n-1n−1 样东西,其目的地分别是节点 22 到节点 nn.由于这个城市的交通比较繁忙,因此所有的道路都 ...

  5. 洛谷P1629 邮递员送信

    题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间.这个邮递员每 ...

  6. 洛谷 P1629 邮递员送信

    题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间.这个邮递员每 ...

  7. P1629 邮递员送信(未完成)

    题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间.这个邮递员每 ...

  8. 洛谷—— P1629 邮递员送信

    https://www.luogu.org/problem/show?pid=1629 题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比 ...

  9. yzoj P1412 & 洛谷P1629 邮递员送信 题解

    有一个邮递员要送东西,邮局在结点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有M条道路,通过每条道路需要一定的时间.这个邮递员每次只能带一 ...

随机推荐

  1. 读书笔记-你不知道的JS上-声明提升

    变量声明提升 Javascript代码一般情况下是由上往下执行的,但是有些情况下不成立. a = 2; //变量声明被提升在当前作用域顶部 var a; console.log(a); console ...

  2. scp命令,用来在本地和远程相互传递文件,非常方便

    scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的.可能会稍微影响一下速度.当你服务器 ...

  3. Windows下caffe的配置和调用caffe库(一)

    一.Windows下caffe的配置: 1. 下载caffe官网提供的开发包,https://github.com/microsoft/caffe 2. 将caffe-master目录下的Window ...

  4. JAVANIO通道

    package com.nio.test; import java.io.FileInputStream; import java.io.FileNotFoundException; import j ...

  5. Scrum Meeting Alpha - 2

    Scrum Meeting Alpha - 2 NewTeam 2017/10/25 地点:新主楼F座二楼 任务反馈 团队成员 完成任务 计划任务 安万贺 完成了大部分api的测试https://gi ...

  6. [Redis源码阅读]sds字符串实现

    初衷 从开始工作就开始使用Redis,也有一段时间了,但都只是停留在使用阶段,没有往更深的角度探索,每次想读源码都止步在阅读书籍上,因为看完书很快又忘了,这次逼自己先读代码.因为个人觉得写作需要阅读文 ...

  7. Promise同时进入catch和then——踩坑

    记录今天使用Promise遇到的一个坑--在resolve()返回运行then之后,函数又进入到了catch,源代码大意如下: var pro = function() { return new Pr ...

  8. C#对注册表的操作

    C#中提供的与注册表相关的最主要的是两个类: Registry 和 RegistryKey,这两个类属于Microsoft.Win32命名空间 Registry类包含5个公共的静态域,分别代表5个基本 ...

  9. HTML5 Web缓存&运用程序缓存&cookie,session

    在介绍HTML5 web缓存前,来认识一下cookie和session: session: 由于HTTP是无状态的,你是谁?你干了什么?抱歉服务器都是不知道的. 因此session(会话)出现了,它会 ...

  10. springboot之banner

    1 在Main里面关闭 @SpringBootApplication@MapperScan("org.sselab.mapper")public class Application ...