一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

(斐波那契数列的变形)

F(1)=1;F(2)=2;

F(n)=F(n-1)+F(n-2);

class Solution {
public:
int jumpFloor(int number) {
if(number<=) return ;
if(number==||number==)
return number;
else return jumpFloor(number-)+jumpFloor(number-); }
};

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法.

(这个解法记不太清楚了)

但是直接分析也可以解出来,n个台阶

F(n)=1+F(n-1)+F(n-2)+````+F(1);

1次跳n阶,最后一次跳1个,对应就是F(n-1),最后一次跳2个,对应就是F(n-2)·····

class Solution {
public:
int jumpFloorII(int number) {
int* array1=new int[number];
array1[]=;
array1[]=;
for(int i=;i<number;i++){
int j=,temp=;
while(j<i){
temp+=array1[j++];
}
array1[i]=temp+;
}
return array1[number-]; }
};

剑指OFFER的跳台阶问题的更多相关文章

  1. 《剑指offer》 跳台阶

    本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...

  2. 剑指offer:跳台阶

    目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...

  3. 剑指offer:跳台阶问题

    基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...

  4. Go语言实现:【剑指offer】跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...

  5. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  6. 【牛客网-剑指offer】跳台阶

    题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 考点: 递归和循环 思路: 1)利用二叉树,左孩子为跳一级,右孩子为跳两 ...

  7. 剑指offer :跳台阶

    这题之前刷leetcode也遇到过,感觉是跟斐波拉契差不多的题. 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解 ...

  8. (原)剑指offer变态跳台阶

    变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析一下明天是个斐波那契 ...

  9. 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)

    首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...

  10. 剑指Offer 变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...

随机推荐

  1. PeopleCode事件和方法只用于online界面不能用于组件接口(component interface)

    在使用CI过程中,哪些方法是不能使用的.以下为PeopleBook解释的内容. 一.搜索框代码不执行:SearchInit, SearchSave, and RowSelect events 意味着使 ...

  2. JAVA - 深入JAVA 虚拟机 2

    类的两种类型的类加载器 -Java虚拟机自带的加载器 根类加载器(Bootstrap): 使用C++编写,programer can not abtain this class. 扩展类加载器(Ext ...

  3. frames.contentWindow.document InvalidCastException 转换错误异常。

    http://bbs.csdn.net/topics/210027068   和 https://bytes.com/topic/c-sharp/answers/248557-threading-pr ...

  4. JS实现悬浮导航的制作--web前端

    思想:导航在这里只有两种状态,一种是初始状态.一种是固定布局状态.实现悬浮导航其实就是通过Javascript脚本语言控制导航的两种状态,主要是对两种状态成立条件的判断,明确了这些,实现起来就不会太难 ...

  5. Luogu 2756 飞行员配对方案问题(二分图最大匹配)

    Luogu 2756 飞行员配对方案问题(二分图最大匹配) Description 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞 ...

  6. POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题)

    POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题) Description liympanda, one of Ikki's friend, likes ...

  7. java基础06 IO流

    IO用于在设备间进行数据传输的操作. Java IO流类图结构:   IO流分类 字节流: InputStream FileInputStream BufferedInputStream Output ...

  8. 使用stackOfIntegers实现降序素数

    使用stackOfIntegers实现降序素数 代码如下: package day06; public class TestSU { public static void main(String[] ...

  9. 用jQuery动态添加小广告

    网站的时候,有些网站总是在右下角,左上角或者其他地方投放广告. 我用jQuery试着自己做了一个,代码如下,如有不对的地方请各位不吝赐教 <!DOCTYPE html> <html ...

  10. 自动化运维—tomcat服务起停(mysql+shell+django+bootstrap+jquery)

    项目简介: 项目介绍:自动化运维是未来的趋势,最近学了不少东西,正好通过这个小项目把这些学的东西串起来,练练手. 基础架构: 服务器端:web框架-Django 前端:html css jQuery ...