BUPT 2017 Summer Training (for 16) #6C

题意

n个点,完全图减去m条边,求生成树个数。

题解

注意可能会给重边。

然后就是生成树计数了。

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 101
#define eps (1e-8)
#define mem(x,v) memset(x,v,sizeof(x))
typedef long long ll;
using namespace std;
int n,m,k;
ll g[N][N];
int sgn(double x){
return x>eps?1:(x<-eps?-1:0);
} ll det(int n){
int i,j,k;
ll ans=1,t;
for(i=0;i<n;++i){
for(j=i+1;j<n;++j)
while(g[j][i]){
t=g[i][i]/g[j][i];
for(k=i;k<n;++k)
g[i][k]-=g[j][k]*t;
swap(g[i],g[j]);
ans=-ans;
}
if(g[i][i]==0)return 0L;
ans=ans*g[i][i];
}
return ans;
} int main(){
while(~scanf("%d%d%d",&n,&m,&k)){
mem(g,-1);
for(int i=0;i<n;++i)
g[i][i]=0; for(int i=0;i<m;++i){
int u,v;
scanf("%d%d",&u,&v);
--u;--v;//!!!
g[u][v]=g[v][u]=0;
}
for(int i=0;i<n;++i)
for(int j=i+1;j<n;++j){
if(g[i][j]){
++g[i][i];
++g[j][j];
}
}
printf("%lld\n",det(n-1));
}
return 0;
}

「UVA10766」Organising the Organisation(生成树计数)的更多相关文章

  1. UVA10766:Organising the Organisation(生成树计数)

    Organising the Organisation 题目链接:https://vjudge.net/problem/UVA-10766 Description: I am the chief of ...

  2. UVa 10766 Organising the Organisation (生成树计数)

    题意:给定一个公司的人数,然后还有一个boss,然后再给定一些人,他们不能成为直属上下级关系,问你有多少种安排方式(树). 析:就是一个生成树计数,由于有些人不能成为上下级关系,也就是说他们之间没有边 ...

  3. 「考试」小P的生成树

    考场上想到一半正解,没想到随机化,不然也许能够$A$掉. 题目所说的其实就是向量加法,求模长最长的向量生成树. 我们考虑对于两个向量,必然在平行边形对角线方向上,他们的投影和是最大的,长度就是对角线长 ...

  4. LOJ #2205. 「HNOI2014」画框 解题报告

    #2205. 「HNOI2014」画框 最小乘积生成树+KM二分图带权匹配 维护一个\((\sum A,\sum B)\)的匹配下凸包,答案在这些点中产生. 具体的,凸包两端可以直接跑单独的\(A\) ...

  5. Organising the Organisation(uva10766)(生成树计数)

    Input Output Sample Input 5 5 2 3 1 3 4 4 5 1 4 5 3 4 1 1 1 4 3 0 2 Sample Output 3 8 3 题意: 有一张图上有\( ...

  6. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

  7. 生成树的计数(基尔霍夫矩阵):UVAoj 10766 Organising the Organisation SPOJ HIGH - Highways

    HIGH - Highways   In some countries building highways takes a lot of time... Maybe that's because th ...

  8. Uva 10766 Organising the Organisation (Matrix_tree 生成树计数)

    题目描述: 一个由n个部门组成的公司现在需要分层,但是由于员工间的一些小小矛盾,使得他们并不愿意做上下级,问在满足他们要求以后有多少种分层的方案数? 解题思路: 生成树计数模板题,建立Kirchhof ...

  9. 「NOI2013」树的计数 解题报告

    「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...

随机推荐

  1. Thrift序列化与反序列化

    Thrift序列化与反序列化的实现机制分析 Thrift是如何实现序死化与反序列化的,在IDL文件中,更改IDL文件中的变量序号或者[使用默认序号的情况下,新增变量时,将新增的变量不放在IDL文件的结 ...

  2. Eclipse启动错误JVM terminated. exit code 1解决方法

    现象: 前一天eclipse还用得好好的,但今天就不能用了,怎么回事? 解决方案: 请先参考其它网络资料:http://www.baidu.com/s?wd=eclipse+jvm+terminate ...

  3. 软件工程(FZU2015) 助教总结

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 本次构建之法-SE助教工作,和福州大学张老师协作,福大学生基本发挥出了一定水平,在此做个小结. 教师 张老师本身的SE教学 ...

  4. connect、resource和dba三种标准角色

    授权语句:grant connect,resource,dba to zwserver 经过授权以后,用户拥有connect.resource和dba三个角色的权限: (1)Connect 角色,是授 ...

  5. js 正则进阶regexp

    一.匹配中文,英文字母和数字及_: const reg = /^[\u4e00-\u9fa5\w]+$/; const str1 = 'shangyy'; const str2 = '尚悦悦ww123 ...

  6. Laravel 核心--Facades 门面

    Laravel 核心--Facades 门面 伊Summer 关注  0.1 2017.08.12 19:07* 字数 2017 阅读 1089评论 0喜欢 5 介绍 Facades 为应用的 IoC ...

  7. Spring中RedirectAttributes的用法

    RedirectAttributes 是Spring mvc 3.1版本之后出来的一个功能,专门用于重定向之后还能带参数跳转的的工具类.他有两种带参的方式: 第一种: redirectAttribut ...

  8. [新三板摘牌]国资企业济南华光光电去年终止拟IPO今年摘牌新三板

    国资企业济南华光光电去年终止拟IPO今年摘牌新三板 http://blog.sina.com.cn/s/blog_e32cfa770102ycku.html http://stock.qlmoney. ...

  9. Laravel设置软删除及其恢复系列操作

    软删除及其相关实现 在模型类中要使用SoftDeletestrait并设置$date属性数组 <?php namespace App\Models; use Illuminate\Databas ...

  10. 获取打开页面时的当前时间(yyyy-MM-dd hh:mm:ss)

    Date.prototype.Format = function (fmt) { var o = { "M+": this.getMonth() + 1, //月份 "d ...