BUPT 2017 Summer Training (for 16) #6C

题意

n个点,完全图减去m条边,求生成树个数。

题解

注意可能会给重边。

然后就是生成树计数了。

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 101
#define eps (1e-8)
#define mem(x,v) memset(x,v,sizeof(x))
typedef long long ll;
using namespace std;
int n,m,k;
ll g[N][N];
int sgn(double x){
return x>eps?1:(x<-eps?-1:0);
} ll det(int n){
int i,j,k;
ll ans=1,t;
for(i=0;i<n;++i){
for(j=i+1;j<n;++j)
while(g[j][i]){
t=g[i][i]/g[j][i];
for(k=i;k<n;++k)
g[i][k]-=g[j][k]*t;
swap(g[i],g[j]);
ans=-ans;
}
if(g[i][i]==0)return 0L;
ans=ans*g[i][i];
}
return ans;
} int main(){
while(~scanf("%d%d%d",&n,&m,&k)){
mem(g,-1);
for(int i=0;i<n;++i)
g[i][i]=0; for(int i=0;i<m;++i){
int u,v;
scanf("%d%d",&u,&v);
--u;--v;//!!!
g[u][v]=g[v][u]=0;
}
for(int i=0;i<n;++i)
for(int j=i+1;j<n;++j){
if(g[i][j]){
++g[i][i];
++g[j][j];
}
}
printf("%lld\n",det(n-1));
}
return 0;
}

「UVA10766」Organising the Organisation(生成树计数)的更多相关文章

  1. UVA10766:Organising the Organisation(生成树计数)

    Organising the Organisation 题目链接:https://vjudge.net/problem/UVA-10766 Description: I am the chief of ...

  2. UVa 10766 Organising the Organisation (生成树计数)

    题意:给定一个公司的人数,然后还有一个boss,然后再给定一些人,他们不能成为直属上下级关系,问你有多少种安排方式(树). 析:就是一个生成树计数,由于有些人不能成为上下级关系,也就是说他们之间没有边 ...

  3. 「考试」小P的生成树

    考场上想到一半正解,没想到随机化,不然也许能够$A$掉. 题目所说的其实就是向量加法,求模长最长的向量生成树. 我们考虑对于两个向量,必然在平行边形对角线方向上,他们的投影和是最大的,长度就是对角线长 ...

  4. LOJ #2205. 「HNOI2014」画框 解题报告

    #2205. 「HNOI2014」画框 最小乘积生成树+KM二分图带权匹配 维护一个\((\sum A,\sum B)\)的匹配下凸包,答案在这些点中产生. 具体的,凸包两端可以直接跑单独的\(A\) ...

  5. Organising the Organisation(uva10766)(生成树计数)

    Input Output Sample Input 5 5 2 3 1 3 4 4 5 1 4 5 3 4 1 1 1 4 3 0 2 Sample Output 3 8 3 题意: 有一张图上有\( ...

  6. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

  7. 生成树的计数(基尔霍夫矩阵):UVAoj 10766 Organising the Organisation SPOJ HIGH - Highways

    HIGH - Highways   In some countries building highways takes a lot of time... Maybe that's because th ...

  8. Uva 10766 Organising the Organisation (Matrix_tree 生成树计数)

    题目描述: 一个由n个部门组成的公司现在需要分层,但是由于员工间的一些小小矛盾,使得他们并不愿意做上下级,问在满足他们要求以后有多少种分层的方案数? 解题思路: 生成树计数模板题,建立Kirchhof ...

  9. 「NOI2013」树的计数 解题报告

    「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...

随机推荐

  1. Educational Codeforces Round 52 (Rated for Div. 2) -C

    #include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> ...

  2. C#使用ES

    C#如何使用ES Elasticsearch简介 Elasticsearch (ES)是一个基于Apache Lucene(TM)的开源搜索引擎,无论在开源还是专有领域,Lucene可以被认为是迄今为 ...

  3. Django之用户上传文件的参数配置

    Django之用户上传文件的参数配置 models.py文件 class Xxoo(models.Model): title = models.CharField(max_length=128) # ...

  4. snappy

    Snappy 是一个 C++ 的用来压缩和解压缩的开发包.其目标不是最大限度压缩或者兼容其他压缩格式,而是旨在提供高速压缩速度和合理的压缩率.Snappy 比 zlib 更快,但文件相对要大 % 到 ...

  5. # 【Python3练习题 008】判断101-200之间有多少个素数,并输出所有素数。

    lst = []for i in range(100): #建立 101-200 的列表 lst.append(101+i) for i in range(101, 201): #除数为 101-20 ...

  6. Select2 4.0.5 API

    详细属性参考官方API,https://github.com/select2/select2/releases/tag/4.0.5 注:4.0.5版本API与3.x版本有差异,有些属性已废弃,以下列出 ...

  7. 创建虚拟目录失败,必须为服务器名称指定“localhost”

    关于微信开发过程,远程调试后,再次打开vs出现项目加载失败的解决办法! 第一步: 第二步:打开编辑的页面,把下图这部分直接注释掉 ok了,再加载一次,就好了!

  8. C#Note13:如何在C#中调用python

    前言 IronPython 是一种在 .NET 及 Mono上的 Python 实现,由微软的 Jim Hugunin(同时也是 Jython 创造者) 所发起,是一个开源的项目,基于微软的 DLR ...

  9. 使用阿里云OSS,上传图片时报错:java.lang.ClassNotFoundException:org.apache.http.ssl.TrustStrategy

    问题产生的原因就是jar包版本问题,阿里的SDk引入的pom中依赖的httpclient和httpcore版本高于当前项目中已经设置的版本. 解决: 删除低版本后,更新下项目.

  10. jenkins和jdk版本问题

    问题:公司业务是用的jdk1.7的,但最新版的jenkins (jenkins-2.138.2-1.1.noarch.rpm)却只支持jdk1.8 分析: 1.公司业务用的jdk1.7不能换,不然影响 ...