BZOJ2242[SDOI2011]计算器——exgcd+BSGS
题目描述
输入
输入包含多组数据。
输出
样例输入
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3
【数据规模和约定】
对于100%的数据,1<=y,z,p<=10^9,P为质数,1<=T<=10。
样例输出
2
1
2
【样例输出2】
2
1
0
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int T,k;
ll y,z,p;
ll G;
map<ll,int>ind;
ll quick(ll x,ll y,ll mod)
{
ll res=1ll;
while(y)
{
if(y&1)
{
res=res*x%mod;
}
x=x*x%mod;
y>>=1;
}
return res;
}
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
void exgcd(ll x,ll y,ll &a,ll &b)
{
if(!y)
{
a=1,b=0;
return ;
}
exgcd(y,x%y,b,a);
b-=(x/y)*a;
}
void solve(int opt)
{
if(opt==1)
{
printf("%lld\n",quick(y,z,p));
}
else if(opt==2)
{
y%=p,z%=p;
ll d=gcd(y,p);
if(z%d)
{
printf("Orz, I cannot find x!\n");
return ;
}
y/=d,z/=d,p/=d;
ll a,b;
exgcd(y,p,a,b);
a*=z;
a=(a%p+p)%p;
printf("%lld\n",a);
}
else
{
ll n=ceil(sqrt(p));
if(y%p==0&&z)
{
printf("Orz, I cannot find x!\n");
return ;
}
ind.clear();
ll sum=z%p;
ind[sum]=0;
for(ll i=1;i<=n;i++)
{
sum=sum*y;
sum%=p;
ind[sum]=i;
}
sum=quick(y,n,p);
ll num=1ll;
for(int i=1;i<=n;i++)
{
num*=sum,num%=p;
if(ind.find(num)!=ind.end())
{
printf("%lld\n",((n*i-ind[num])%p+p)%p);
return ;
}
}
printf("Orz, I cannot find x!\n");
}
}
int main()
{
scanf("%d%d",&T,&k);
while(T--)
{
scanf("%lld%lld%lld",&y,&z,&p);
solve(k);
}
}
BZOJ2242[SDOI2011]计算器——exgcd+BSGS的更多相关文章
- 【bzoj2242】[SDOI2011]计算器 EXgcd+BSGS
题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...
- BZOJ2242 [SDOI2011]计算器 【BSGS】
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 4741 Solved: 1796 [Submit][Sta ...
- 【BZOJ2242】计算器(BSGS,快速幂)
[BZOJ2242]计算器(BSGS,快速幂) 题面 BZOJ 洛谷 1.给定y.z.p,计算y^z mod p 的值: 2.给定y.z.p,计算满足xy ≡z(mod p)的最小非负整数x: 3.给 ...
- [bzoj2242][Sdoi2011]计算器_exgcd_BSGS
计算器 bzoj-2242 Sdoi-2011 题目大意:裸题,支持快速幂.扩展gcd.拔山盖世 注释:所有数据保证int,10组数据. 想法:裸题,就是注意一下exgcd别敲错... ... 最后, ...
- BZOJ2242 [SDOI2011]计算器
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- bzoj2242: [SDOI2011]计算器 BSGS+exgcd
你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...
- 【数学 BSGS】bzoj2242: [SDOI2011]计算器
数论的板子集合…… Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最 ...
- bzoj2242: [SDOI2011]计算器 && BSGS 算法
BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...
- 【数论】【快速幂】【扩展欧几里得】【BSGS算法】bzoj2242 [SDOI2011]计算器
说是BSGS……但是跟前面那题的扩展BSGS其实是一样的……因为模数虽然是质数,但是其可能可以整除a!!所以这两者其实是一样的…… 第一二种操作不赘述. #include<cstdio> ...
随机推荐
- 在Bootstrap开发中解决Tab标签页切换图表显示问题
在做响应式页面的时候,往往需要考虑更多尺寸设备的界面兼容性,一般不能写死像素,以便能够使得界面元素能够根据设备的不同进行动态调整,但往往有时候还是碰到一些问题,如Tab标签第一页面正常显示,但是切换其 ...
- 在开发框架中使用FTP辅助类上传或者下载文件,方便管理附件内容
在有些系统应用里面,我们需要对应用服务器.数据库服务器.文件服务器进行分开,文件路径等信息存储在数据库服务器里面,但文件内容则存储在文件服务器里面,通过使用FTP进行文件的上传下载,从而实现更加高效的 ...
- Python 学习 第十篇:正则表达式 - re
规则表达式(Regular Expression, RE),又称作正则表达式,通常用于检索.替换符合指定规则的文本,正则表达式定义的规则,称作模式(Pattern),即正则表达式的作用是从文本中查找到 ...
- WinForm 之 窗口最小化到托盘及右键图标显示菜单
Form最小化是指整个Form都缩小到任务栏上,但是窗体以Form的标题栏形式显示在任务栏上, 若是想让Form以Icon的形式显示在任务栏右下角,则需要给Form添加一个NotifyIcon控件. ...
- Python Revisited Day 02 (数据类型)
目录 Python 关键字 整数 整数转换函数 整数位逻辑操作符 浮点类型 math模块函数与常量 复数 精确的十进制数字 decimal 字符串 str.format() 格式规约 Python 关 ...
- 006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate
006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate https://www.cnblogs.com/delphixx/p/1 ...
- group by用法
select * from Table group by id,一定不能是*,而是某一个列或者某个列的聚合函数. 参考:http://www.cnblogs.com/jingfengling/p/59 ...
- Bus Video System CodeForces - 978E (思维)
The busses in Berland are equipped with a video surveillance system. The system records information ...
- Lumen与laravel的区别
Lumen与laravel的区别 困惑 一直都无法很友好的理解Lumen与Laravel之间的区别,只知道他们是非常相似的两个php框架,使用方法什么的都差不多. 为什么要解惑 最近接手了公司的一 ...
- [转帖]一段关于Unix与 Linux的暗黑史
一段关于Unix与 Linux的暗黑史 https://blog.csdn.net/a343315623/article/details/51436715 微软曾经开发过 MS-DOS Xenix O ...