CF700E Cool Slogans

题目描述

给出一个长度为n的字符串\(s[1]\),由小写字母组成。定义一个字符串序列\(s[1....k]\),满足性质:\(s[i]\)在\(s[i-1] (i>=2)\)中出现至少两次(位置可重叠),问最大的\(k\)是多少,使得从\(s[1]\)开始到\(s[k]\)都满足这样一个性质。

很妙的题啊。

首先\(s[i]\)一定是\(s[i+1]\)的后缀。因为如果不是,我们可以吧多余的部分删除,这样不影响答案。

我们建出后缀自动机,然后在\(fail\)树上\(DP\)。我们设\(f_v\)表示后缀自动机上\(v\)节点代表的子串作为最后一个串的答案。

更新的时候就判断\(v\)的\(fail\)代表的节点是否在\(v\)代表的节点中出现了两次,如果是,\(f_v=f_{fail_v}+1\)。否则,\(v\)就没用了,我们更新\(v\)的儿子时仍然用\(fail_v\)来更新,因为他们\(f\)值相同,但是\(fail_v\)更短,所以更优。

判断一个串是否再另一个串中出现了两次可以用线段树合并搞一搞。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 400005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n;
char s[N];
int mxlen[N<<1],fail[N<<1];
int ch[N<<1][26];
int last=1,cnt=1;
int pos[N<<1];
void Insert(int f,int Pos) {
int p=last,v=++cnt;
pos[v]=Pos;
last=v;
mxlen[v]=mxlen[p]+1;
while(p&&!ch[p][f]) ch[p][f]=v,p=fail[p];
if(!p) return fail[v]=1,void();
int sn=ch[p][f];
if(mxlen[sn]==mxlen[p]+1) return fail[v]=sn,void();
int New=++cnt;
memcpy(ch[New],ch[sn],sizeof(ch[sn]));
mxlen[New]=mxlen[p]+1;
fail[New]=fail[sn];
fail[sn]=fail[v]=New;
while(p&&ch[p][f]==sn) ch[p][f]=New,p=fail[p];
} int rt[N<<1];
int lx,rx;
int tot;
int tag[N*40];
int ls[N*40],rs[N*40];
int mn[N<<1];
void Insert(int &v,int old,int lx,int rx,int p) {
v=++tot;
tag[v]=tag[old]+1;
if(lx==rx) return ;
int mid=lx+rx>>1;
if(p<=mid) Insert(ls[v],ls[old],lx,mid,p);
else Insert(rs[v],rs[old],mid+1,rx,p);
} int Merge(int a,int b,int lx,int rx) {
if(!a||!b) return a+b;
int v=++tot;
tag[v]=tag[a]+tag[b];
if(lx==rx) return v;
int mid=lx+rx>>1;
ls[v]=Merge(ls[a],ls[b],lx,mid);
rs[v]=Merge(rs[a],rs[b],mid+1,rx);
return v;
} int query(int v,int lx,int rx,int l,int r) {
if(!v||lx>r||rx<l) return 0;
if(l<=lx&&rx<=r) return tag[v];
int mid=lx+rx>>1;
return query(ls[v],lx,mid,l,r)+query(rs[v],mid+1,rx,l,r);
} vector<int>e[N<<1];
void dfs(int v) {
if(pos[v]) Insert(rt[v],rt[v],lx,rx,pos[v]);
for(int i=0;i<e[v].size();i++) {
int to=e[v][i];
dfs(to);
pos[v]=pos[to];
rt[v]=Merge(rt[v],rt[to],lx,rx);
}
} int f[N],top[N];
int ans;
bool chk(int v,int f) {
return query(rt[f],lx,rx,pos[v]-mxlen[v]+mxlen[f],pos[v])>=2;
} void solve(int v) {
ans=max(ans,f[v]);
for(int i=0;i<e[v].size();i++) {
int to=e[v][i];
if(v==1) f[to]=1,top[to]=to;
else {
if(chk(to,top[v])) f[to]=f[v]+1,top[to]=to;
else f[to]=f[v],top[to]=top[v];
}
solve(to);
}
} int main() {
n=Get();
scanf("%s",s+1);
lx=1,rx=n;
for(int i=1;i<=n;i++) Insert(s[i]-'a',i);
for(int i=2;i<=cnt;i++) {
e[fail[i]].push_back(i);
}
dfs(1);
solve(1);
cout<<ans;
return 0;
}

CF700E Cool Slogans的更多相关文章

  1. CF700E Cool Slogans SAM、线段树合并、树形DP

    传送门 在最优的情况下,序列\(s_1,s_2,...,s_k\)中,\(s_i (i \in [2 , k])\)一定会是\(s_{i-1}\)的一个\(border\),即\(s_i\)同时是\( ...

  2. CF700E:Cool Slogans(SAM,线段树合并)

    Description 给你一个字符串,如果一个串包含两个可有交集的相同子串,那么这个串的价值就是子串的价值+1.问你给定字符串的最大价值子串的价值. Input 第一行读入字符串长度$n$,第二行是 ...

  3. CF700E Cool Slogans——SAM+线段树合并

    RemoteJudge 又是一道用线段树合并来维护\(endpos\)的题,还有一道见我的博客CF666E 思路 先把\(SAM\)建出来 如果两个相邻的串\(s_i\)和\(s_{i+1}\)要满足 ...

  4. CF700E Cool Slogans 后缀自动机 + right集合线段树合并 + 树形DP

    题目描述 给出一个长度为n的字符串s[1],由小写字母组成.定义一个字符串序列s[1....k],满足性质:s[i]在s[i-1] (i>=2)中出现至少两次(位置可重叠),问最大的k是多少,使 ...

  5. 字符串数据结构模板/题单(后缀数组,后缀自动机,LCP,后缀平衡树,回文自动机)

    模板 后缀数组 #include<bits/stdc++.h> #define R register int using namespace std; const int N=1e6+9; ...

  6. Codeforces 1063F - String Journey(后缀数组+线段树+dp)

    Codeforces 题面传送门 & 洛谷题面传送门 神仙题,做了我整整 2.5h,写篇题解纪念下逝去的中午 后排膜拜 1 年前就独立切掉此题的 ymx,我在 2021 年的第 5270 个小 ...

  7. 【CF700E】Cool Slogans 后缀自动机+线段树合并

    [CF700E]Cool Slogans 题意:给你一个字符串S,求一个最长的字符串序列$s_1,s_2,...,s_k$,满足$\forall s_i$是S的子串,且$s_i$在$s_{i-1}$里 ...

  8. 【CF700E】Cool Slogans(后缀自动机)

    [CF700E]Cool Slogans(后缀自动机) 题面 洛谷 CodeForces 题解 构建后缀自动机,求出后缀树 现在有个比较明显的\(dp\) 设\(f[i]\)表示从上而下到达当前点能够 ...

  9. CF700E E. Cool Slogans

    https://codeforces.com/contest/700/problem/E 题解:https://www.luogu.org/problemnew/solution/CF700E 其实就 ...

随机推荐

  1. Git Extensions 和 Tortoisegit 到底是什么?Git For VS(Git For Visual Studio)(Visual Studio 中使用 Git)

    前言: 我们使用 Git 作为版本控制的朋友们,一定都熟悉 Git Extensions 和 Tortoisegit 两款工具,但是对于初学者,可能就不那么了解了. 当然如果有幸,你接触过 SVN , ...

  2. “每日一道面试题”.Net中GC的运行机制

    GC 也就是垃圾回收,经常遇到的面试题,关于GC 感觉可以写一本书,我们要做的也就是简单理解,如果有意愿,可以深入研究 所谓的垃圾回收,也就是清理回收托管堆上不再被使用的对象内存,并且移动仍在被使用的 ...

  3. Element-UI 日期范围 date-picke

    实际项目应用案例: <el-form-item label="开始日期:" prop="StartDate"> <el-date-picker ...

  4. springMVC常见错误-解决org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'org.spring

    笔者参考文档: https://blog.csdn.net/sinat_24928447/article/details/47807105 可能错误原因即解决方法: 1.配置文件错误 a)这是配置文件 ...

  5. webpack4 系列教程(十四):Clean Plugin and Watch Mode

    作者按:因为教程所示图片使用的是 github 仓库图片,网速过慢的朋友请移步<webpack4 系列教程(十四):Clean Plugin and Watch Mode>原文地址.更欢迎 ...

  6. 快速掌握JavaScript面试基础知识(二)

    译者按: 总结了大量JavaScript基本知识点,很有用! 原文: The Definitive JavaScript Handbook for your next developer interv ...

  7. 带你使用JS-SDK自定义微信分享效果

    前言 想必各位在写wap端时都遇到过这样的场景吧 ----自定义分享标题.图片.描述 接下来小编给大家讲解下分享相关操作 预期效果 原始的分享效果: 使用微信JS-SDK的分享效果: 可以看出缩略图, ...

  8. gulp es6 转 es5

    npm install --save-dev gulp-babel babel-preset-es2015 var babel = require("gulp-babel"); / ...

  9. JS怎样实现图片的懒加载以及jquery.lazyload.js的使用

    在项目中有时候会用到图片的延迟加载,那么延迟加载的好处是啥呢? 我觉得主要包括两点吧,第一是在包含很多大图片长页面中延迟加载图片可以加快页面加载速度:第二是帮助降低服务器负担. 下面介绍一下常用的延迟 ...

  10. 【读书笔记】iOS-更新项目前要注意的事情

    在进行永久更改项目的任何现代化操作之前,要问自己几个问题. 1,我还需要返回项目的旧代码吗? 2,我的同事中有没有人无法升级到最新版本的Xcode? 3,  如果我使用了最新的功能,会不会减少用户? ...