【NLP】Recurrent Neural Network and Language Models
0. Overview
What is language models?
A time series prediction problem.
It assigns a probility to a sequence of words,and the total prob of all the sequence equal one.
Many Natural Language Processing can be structured as (conditional) language modelling.
Such as Translation:
P(certain Chinese text | given English text)
Note that the Prob follows the Bayes Formula.
How to evaluate a Language Model?
Measured with cross entropy.

Three data sets:
1 Penn Treebank: www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
2 Billion Word Corpus: code.google.com/p/1-billion-word-language-modeling-benchmark/
3 WikiText datasets: Pointer Sentinel Mixture Models. Merity et al., arXiv 2016
|
Overview: Three approaches to build language models: Count based n-gram models: approximate the history of observed words with just the previous n words. Neural n-gram models: embed the same fixed n-gram history in a continues space and thus better capture correlations between histories. Recurrent Neural Networks: we drop the fixed n-gram history and compress the entire history in a fixed length vector, enabling long range correlations to be captured. |
1. N-Gram models:
Assumption:
Only previous history matters.
Only k-1 words are included in history
Kth order Markov model
2-gram language model:

The conditioning context, wi−1, is called the history
Estimate Probabilities:
(For example: 3-gram)
(count w1,w2,w3 appearing in the corpus)
Interpolated Back-Off:
That is , sometimes some certain phrase don’t appear in the corpus so the Prob of them is zero. To avoid this situation, we use Interpolated Back-off. That is to say, Interpolate k-gram models(k = n-1、n-2…1) into the n-gram models.
A simpal approach:

Summary for n-gram:
Good: easy to train. Fast.
Bad: Large n-grams are sparse. Hard to capture long dependencies. Cannot capture correlations between similary word distributions. Cannot resolve the word morphological problem.(running – jumping)
2. Neural N-Gram Language Models
Use A feed forward network like:

Trigram(3-gram) Neural Network Language Model for example:


Wi are hot-vectors. Pi are distributions. And shape is |V|(words in the vocabulary)

(a sampal:detail cal graph)

Define the loss:cross entopy:

Training: use Gradient Descent

And a sampal of taining:

Comparsion with Count based n-gram LMs:
Good: Better performance on unseen n-grams But poorer on seen n-grams.(Sol: direct(linear) n-gram fertures). Use smaller memory than Counted based n-gram.
Bad: The number of parameters in the models scales with n-gram size. There is a limit on the longest dependencies that an be captured.
3. Recurrent Neural Network LM
That is to say, using a recurrent neural network to build our LM.



Model and Train:

Algorithm: Back Propagation Through Time(BPTT)
Note:

Note that, the Gradient Descent depend heavily. So the improved algorithm is:
Algorithm: Truncated Back Propagation Through Time.(TBPTT)
So the Cal graph looks like this:

So the Training process and Gradient Descent:

Summary of the Recurrent NN LMs:
Good:
RNNs can represent unbounded dependencies, unlike models with a fixed n-gram order.
RNNs compress histories of words into a fixed size hidden vector.
The number of parameters does not grow with the length of dependencies captured, but they do grow with the amount of information stored in the hidden layer.
Bad:
RNNs are hard to learn and often will not discover long range dependencies present in the data(So we learn LSTM unit).
Increasing the size of the hidden layer, and thus memory, increases the computation and memory quadratically.
Mostly trained with Maximum Likelihood based objectives which do not encode the expected frequencies of words a priori.
Some blogs recommended:
|
Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks karpathy.github.io/2015/05/21/rnn-effectiveness/ Yoav Goldberg: The unreasonable effectiveness of Character-level Language Models nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139 Stephen Merity: Explaining and illustrating orthogonal initialization for recurrent neural networks. smerity.com/articles/2016/orthogonal_init.html |
【NLP】Recurrent Neural Network and Language Models的更多相关文章
- pytorch --Rnn语言模型(LSTM,BiLSTM) -- 《Recurrent neural network based language model》
论文通过实现RNN来完成了文本分类. 论文地址:88888888 模型结构图: 原理自行参考论文,code and comment: # -*- coding: utf-8 -*- # @time : ...
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- 【NLP】自然语言处理:词向量和语言模型
声明: 这是转载自LICSTAR博士的牛文,原文载于此:http://licstar.net/archives/328 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领 ...
- Recurrent Neural Network Language Modeling Toolkit代码学习
Recurrent Neural Network Language Modeling Toolkit 工具使用点击打开链接 本博客地址:http://blog.csdn.net/wangxingin ...
- 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network - step by step
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...
- Recurrent Neural Network(循环神经网络)
Reference: Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...
- Recurrent Neural Network系列2--利用Python,Theano实现RNN
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network[survey]
0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...
- (zhuan) Recurrent Neural Network
Recurrent Neural Network 2016年07月01日 Deep learning Deep learning 字数:24235 this blog from: http:/ ...
随机推荐
- SQL Server中UPDATE和DELETE语句结合INNER/LEFT/RIGHT/FULL JOIN的用法
在SQL Server中,UPDATE和DELETE语句是可以结合INNER/LEFT/RIGHT/FULL JOIN来使用的. 我们首先在数据库中新建两张表: [T_A] CREATE TABLE ...
- Nginx+keepalived高可用配置实战(内附彩蛋)
1.整体架构图如下 2.环境准备 今天所配置的是keepalived+nginx 的负载均衡 下载keepalived软件 [root@LB01 tools]# wget http://www.kee ...
- Selenium库
'''自动化测试工具,支持多种浏览器.爬虫中主要用来解决JavaScrip渲染的问题.''''''基本使用'''from selenium import webdriverfrom selenium. ...
- Linq sum()时遇到NULL
当使用linq求和sum()时,如果某列数据为null,就会出现异常 使用下面的语句即可解决相关问题: db.TableModel.Where(w => w.ID == ID).Select(s ...
- js变量以及其作用域
一.变量的类型 Javascript和Java.C这些语言不同,它是一种无类型.弱检测的语言.它对变量的定义并不需要声明变量类型,我们只要通过赋值的形式,可以将各种类型的数据赋值给同一个变量.例如: ...
- Shell脚本命令图片
查看相关文档:shell脚本1 shell脚本2
- 【学习总结】vi/vim命令是使用
每次要么想不起来用,要么进去了出不来,真是醉了.痛定思痛此处填坑. 参考教程:菜鸟教程vi/vim 实验环境:借Git-bash宝地一用 注意:记住关键的步骤! 按i a o进入输入模式(即使有时按v ...
- 解决scrapy报错:ModuleNotFoundError: No module named 'win32api'
ModuleNotFoundError: No module named 'win32api' 表示win32api未安装 解决办法: 下载对应python版本的win32api,并安装. 下载地址: ...
- MongoDB——待整理
MongoDB mongoose——http://mongoosejs.com/ npm i mongoose Mongoose 通过外键与另一张表建立关联:Mongoose Populate 基本使 ...
- md5加密通过URL传给后台
首先要把你要用的md5库引入 这个技术其实挺简单的,咋们直接贴上代码(这个是项目上的) sign = hex_md5("type="+type&"userId=& ...