词形还原(Lemmatization)是文本预处理中的重要部分,与词干提取(stemming)很相似。

  简单说来,词形还原就是去掉单词的词缀,提取单词的主干部分,通常提取后的单词会是字典中的单词,不同于词干提取(stemming),提取后的单词不一定会出现在单词中。比如,单词“cars”词形还原后的单词为“car”,单词“ate”词形还原后的单词为“eat”。

  在Python的nltk模块中,使用WordNet为我们提供了稳健的词形还原的函数。如以下示例Python代码:

from nltk.stem import WordNetLemmatizer

wnl = WordNetLemmatizer()
# lemmatize nouns
print(wnl.lemmatize('cars', 'n'))
print(wnl.lemmatize('men', 'n')) # lemmatize verbs
print(wnl.lemmatize('running', 'v'))
print(wnl.lemmatize('ate', 'v')) # lemmatize adjectives
print(wnl.lemmatize('saddest', 'a'))
print(wnl.lemmatize('fancier', 'a'))

输出结果如下:

car

men

run

eat

sad

fancy

在以上代码中,wnl.lemmatize()函数可以进行词形还原,第一个参数为单词,第二个参数为该单词的词性,如名词,动词,形容词等,返回的结果为输入单词的词形还原后的结果。

  词形还原一般是简单的,但具体我们在使用时,指定单词的词性很重要,不然词形还原可能效果不好,如以下代码:

from nltk.stem import WordNetLemmatizer

wnl = WordNetLemmatizer()
print(wnl.lemmatize('ate', 'n'))
print(wnl.lemmatize('fancier', 'v'))

输出结果如下:

ate

fancier

  那么,如何获取单词的词性呢?在NLP中,使用Parts of speech(POS)技术实现。在nltk中,可以使用nltk.pos_tag()获取单词在句子中的词性,如以下Python代码:

sentence = 'The brown fox is quick and he is jumping over the lazy dog'
import nltk
tokens = nltk.word_tokenize(sentence)
tagged_sent = nltk.pos_tag(tokens)
print(tagged_sent)

输出结果如下:

[('The', 'DT'), ('brown', 'JJ'), ('fox', 'NN'), ('is', 'VBZ'), ('quick', 'JJ'), ('and', 'CC'), ('he', 'PRP'), ('is', 'VBZ'), ('jumping', 'VBG'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'JJ'), ('dog', 'NN')]

  关于上述词性的说明,可以参考下表:

  OK,知道了获取单词在句子中的词性,再结合词形还原,就能很好地完成词形还原功能。示例的Python代码如下:

from nltk import word_tokenize, pos_tag
from nltk.corpus import wordnet
from nltk.stem import WordNetLemmatizer # 获取单词的词性
def get_wordnet_pos(tag):
if tag.startswith('J'):
return wordnet.ADJ
elif tag.startswith('V'):
return wordnet.VERB
elif tag.startswith('N'):
return wordnet.NOUN
elif tag.startswith('R'):
return wordnet.ADV
else:
return None sentence = 'football is a family of team sports that involve, to varying degrees, kicking a ball to score a goal.'
tokens = word_tokenize(sentence) # 分词
tagged_sent = pos_tag(tokens) # 获取单词词性 wnl = WordNetLemmatizer()
lemmas_sent = []
for tag in tagged_sent:
wordnet_pos = get_wordnet_pos(tag[1]) or wordnet.NOUN
lemmas_sent.append(wnl.lemmatize(tag[0], pos=wordnet_pos)) # 词形还原 print(lemmas_sent)

输出结果如下:

['football', 'be', 'a', 'family', 'of', 'team', 'sport', 'that', 'involve', ',', 'to', 'vary', 'degree', ',', 'kick', 'a', 'ball', 'to', 'score', 'a', 'goal', '.']

输出的结果就是对句子中的单词进行词形还原后的结果。

  本次分享到此结束,欢迎大家交流~

注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~

NLP入门(三)词形还原(Lemmatization)的更多相关文章

  1. token:NLP之词形还原

    已迁移到我新博客,阅读体验更佳token:NLP之词形还原 完整代码实现放在我的github上:click me 一.任务描述 形态还原算法: 输入一个单词 如果词典里有该词,输出该词及其属性,转4, ...

  2. NLP入门(五)用深度学习实现命名实体识别(NER)

    前言   在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现N ...

  3. NLP入门(八)使用CRF++实现命名实体识别(NER)

    CRF与NER简介   CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机 ...

  4. 【原创】NIO框架入门(三):iOS与MINA2、Netty4的跨平台UDP双向通信实战

    前言 本文将演示一个iOS客户端程序,通过UDP协议与两个典型的NIO框架服务端,实现跨平台双向通信的完整Demo.服务端将分别用MINA2和Netty4进行实现,而通信时服务端你只需选其一就行了.同 ...

  5. Swift语法基础入门三(函数, 闭包)

    Swift语法基础入门三(函数, 闭包) 函数: 函数是用来完成特定任务的独立的代码块.你给一个函数起一个合适的名字,用来标识函数做什么,并且当函数需要执行的时候,这个名字会被用于“调用”函数 格式: ...

  6. Thinkphp入门三—框架模板、变量(47)

    原文:Thinkphp入门三-框架模板.变量(47) [在控制器调用模板] display()   调用当前操作名称的模板 display(‘名字’)  调用指定名字的模板文件 控制器调用模板四种方式 ...

  7. DevExpress XtraReports 入门三 创建 Master-Detail(主/从) 报表

    原文:DevExpress XtraReports 入门三 创建 Master-Detail(主/从) 报表 本文只是为了帮助初次接触或是需要DevExpress XtraReports报表的人群使用 ...

  8. 微服务(入门三):netcore ocelot api网关结合consul服务发现

    简介 api网关是提供给外部调用的统一入口,类似于dns,所有的请求统一先到api网关,由api网关进行指定内网链接. ocelot是基于netcore开发的开源API网关项目,功能强大,使用方便,它 ...

  9. 脑残式网络编程入门(三):HTTP协议必知必会的一些知识

    本文原作者:“竹千代”,原文由“玉刚说”写作平台提供写作赞助,原文版权归“玉刚说”微信公众号所有,即时通讯网收录时有改动. 1.前言 无论是即时通讯应用还是传统的信息系统,Http协议都是我们最常打交 ...

随机推荐

  1. python_flask框架学习之路(1)

    1.初识web,了解utl . 术语: scheme://host:port/path?query-string=xxx#yyyy 例子:https://i.cnblogs.com/EditArtic ...

  2. HTML基本格式和文本元素(标签)介绍

    <!doctype html>//声明文档类型 <html lang="zh-cn">//文档开始,后面是声明是中文页面的意思,en是英语的意思 <h ...

  3. CentOS7 安装配置rsync

    centos7自带rsync,今天简单记录下. rsync安装配置步骤 服务器端: 1.修改默认配置文件/etc/rsyncd.conf,该成如下: # /etc/rsyncd: configurat ...

  4. _ZNote_Qt_添加图标方法

    简单来说就两步: 将icns图标添加入资源文件,例如picture.icns .pro文件中添加 (图标) ICON = picture.icns 程序中添加(程序窗口上显示) setWindowIc ...

  5. Nginx 教程(1):基本概念

    简介 嗨!分享就是关心!所以,我们愿意再跟你分享一点点知识.我们准备了这个划分为三节的<Nginx教程>.如果你对 Nginx 已经有所了解,或者你希望了解更多,这个教程将会对你非常有帮助 ...

  6. C语言 字符二维数组(多个字符串)探讨 求解

    什么是二维字符数组? 二维字符数组中为什么定义字符串是一行一个? “hello world”在C语言中代表什么? 为什么只能在定义时才能写成char   a[10]="jvssj" ...

  7. 5-Django接口数据处理

    1.get接口数据处理 # get接口数据处理 def dadaHandle_get(request): if request.method == 'GET': results = {} userna ...

  8. 了解一下Ubuntu系统

    百度百科: ubuntu系统基于Debian发行版和GNOME桌面环境.Ubuntu的目标在于为一般用户提供一个最新的.同时又相当稳定的主要由自由软件构建而成的操作系统,它可免费使用,并带有社团及专业 ...

  9. 背水一战 Windows 10 (97) - 选取器: CachedFileUpdater

    [源码下载] 背水一战 Windows 10 (97) - 选取器: CachedFileUpdater 作者:webabcd 介绍背水一战 Windows 10 之 选取器 CachedFileUp ...

  10. Jenkins的初级应用(1)-Publish Over SSH

    作为Jenkins最基本的应用也是重要的一环就是可以把文件传到服务器上面,或者在服务器上面远程执行命令.一个可在在远程分发了文件之后就控制远程服务器的操作.另外一个就是分发了文件之后,结合自动化工具在 ...