题意:懒得写了......

解:

一开始想的是每天建点,每种人建点,然后连边费用流,发现一个人可以管辖多天,不好处理。

回想起了网络流24题中的"最长k可重线段集","最长k可重区间集"等问题,然后发现这题也可以横着流啊。

具体来说,首先在下面开一条安全快速绿色通道,存放那些不用的人(流量)。

那么每天要用怎么办?把人逼出去!

流量设为INF - ai就可以逼出去ai个人了!

然后每种人都对应一段区间,连边跑最小费用最大流即可。

 #include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring> const int N = , M = , INF = 0x3f3f3f3f; struct Edge {
int nex, v, c, len;
}edge[M << ]; int top = ; int e[N], d[N], vis[N], pre[N], flow[N];
std::queue<int> Q; inline void add(int x, int y, int z, int w) {
top++;
edge[top].v = y;
edge[top].c = z;
edge[top].len = w;
edge[top].nex = e[x];
e[x] = top; top++;
edge[top].v = x;
edge[top].c = ;
edge[top].len = -w;
edge[top].nex = e[y];
e[y] = top;
return;
} inline bool SPFA(int s, int t) {
memset(d, 0x3f, sizeof(d));
d[s] = ;
flow[s] = INF;
vis[s] = ;
Q.push(s);
while(!Q.empty()) {
int x = Q.front();
Q.pop();
vis[x] = ;
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(edge[i].c && d[y] > d[x] + edge[i].len) {
d[y] = d[x] + edge[i].len;
pre[y] = i;
flow[y] = std::min(flow[x], edge[i].c);
if(!vis[y]) {
vis[y] = ;
Q.push(y);
}
}
}
}
return d[t] < INF;
} inline void update(int s, int t) {
int temp = flow[t];
while(t != s) {
int i = pre[t];
edge[i].c -= temp;
edge[i ^ ].c += temp;
t = edge[i ^ ].v;
}
return;
} inline int solve(int s, int t, int &cost) {
int ans = ;
cost = ;
while(SPFA(s, t)) {
ans += flow[t];
cost += flow[t] * d[t];
update(s, t);
}
return ans;
} int main() {
int n, m;
scanf("%d%d", &n, &m);
for(int i = , x; i <= n; i++) {
scanf("%d", &x);
add(i, i + , INF - x, );
}
for(int i = , x, y, z; i <= m; i++) {
scanf("%d%d%d", &x, &y, &z);
add(x, y + , INF, z);
}
int s = n + ;
add(s, , INF, );
int ans;
solve(s, n + , ans);
printf("%d", ans);
return ;
}

AC代码

题外话:A了之后我自以为建图很奇葩,跑去看题解,发现都是这种解法......

还可以用线性规划做...好神奇啊。

洛谷P3980 志愿者招募的更多相关文章

  1. 洛谷P3980 [NOI2008]志愿者招募

    题解 最小费用最大流 每一天是一条边\((inf-a[i], 0)\) 然后对于一类志愿者, 区间两端连一条\((inf, c[i])\) \(S\)向第一个点连\((inf, 0)\) 最后一个点向 ...

  2. 洛谷P3980:[NOI2008]志愿者招募

    线性规划: #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring&g ...

  3. Solution -「NOI 2008」「洛谷 P3980」志愿者招募

    \(\mathcal{Description}\)   Link.   一项持续 \(n\) 天的任务,第 \(i\) 天需要至少 \(a_i\) 人工作.还有 \(m\) 种雇佣方式,第 \(i\) ...

  4. 【洛谷】P3980 [NOI2008]志愿者招募

    [洛谷]P3980 [NOI2008]志愿者招募 我居然现在才会用费用流解线性规划-- 当然这里解决的一类问题比较特殊 以式子作为点,变量作为边,然后要求就是变量在不同的式子里出现了两次,系数一次为+ ...

  5. BZOJ.1061.[NOI2008]志愿者招募(线性规划 对偶原理 单纯形 / 费用流SPFA)

    题目链接 线性规划 用\(A_{ij}=0/1\)表示第\(i\)天\(j\)类志愿者能否被招募,\(x_i\)为\(i\)类志愿者招募了多少人,\(need_i\)表示第\(i\)天需要多少人,\( ...

  6. BZOJ4946 & 洛谷3826 & UOJ318:[NOI2017]蔬菜——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4946 https://www.luogu.org/problemnew/show/P3826 ht ...

  7. 洛谷P1342 请柬(SPFA)

    To 洛谷.1342 请柬 题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤其是古色古香的喜剧片.他们已经打印请帖和所有必要的信息和计 ...

  8. BZOJ 1061: [Noi2008]志愿者招募

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4064  Solved: 2476[Submit][Stat ...

  9. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

随机推荐

  1. Git本地仓库push至GitHub远程仓库每次输入账户密码问题解决(亲测可行)

    在使用git push命令将本地仓库内容推送至GitHub远程仓库的每一次git都要让我们输入GitHub的用户名和密码.这着实让我们心烦.我们会有疑问,我明明设置了公钥呀!怎么还需要输入账户和密码? ...

  2. java中级——二叉树比较冒泡和选择排序

    上次我们说到二叉树排序比较,给出如下的题目 题目:创建五万个随机数,然后用分别用冒泡法,选择法,二叉树3种排序算法进行排序,比较哪种更快 废话不说直接上源码,可以看控制台结果 注意的是 需要我们需要上 ...

  3. Zookeeper的作用,在Hadoop及hbase中具体作用

    什么是Zookeeper,Zookeeper的作用是什么,在Hadoop及hbase中具体作用是什么 一.什么是Zookeeper ZooKeeper 顾名思义 动物园管理员,他是拿来管大象(Hado ...

  4. linux安装php7.2.7

    1.下载php 官网下载:#wget http://cn2.php.net/get/php-7.2.7.tar.gz/from/a/mirror.(ps:应该是这么下载的,但是我下载的都是一个mirr ...

  5. 【转】解决Maxwell发送Kafka消息数据倾斜问题

    最近用Maxwell解析MySQL的Binlog,发送到Kafka进行处理,测试的时候发现一个问题,就是Kafka的Offset严重倾斜,三个partition,其中一个的offset已经快200万了 ...

  6. 用mescroll实现无限上拉增加数据,下拉刷新数据 (学习笔记)

    最近自己做一个web app需要用到上拉查询下页数据,网上看了很多很多帖子,发现并不能快速的套用,总是会出现各种问题无法使用,于是无奈自己跑去看了官方api文档,终于做了出来,至此做个笔记,以后用到可 ...

  7. Prism框架研究(三)

    这一篇主要用来介绍一下基于Prism Library中的核心服务以及如何配置Container,还有一个重要的部分是如何管理各个组件之间的依赖性,下面就这些内容来做一一的介绍. 1 Prism中的核心 ...

  8. 使用composer安装php的相关框架

    使用composer来安装php的相关框架,不需要事先准备composer.json以及conmposer.lock以及composer.phar等文件: 直接在项目根目录下是使用composer r ...

  9. Ehlib(Delphi控件) v9.2.024 D7-XE10.2 免费绿色特别版

    下载地址:https://www.jb51.net/softs/579413.html#downintro2 EHLib是一个DELPHI 下的非常棒的第三方Grid控件,比DELPHI自带的强大许多 ...

  10. 三、oneinstack

    一.介绍 oneinstack https://www.cnblogs.com/lxwphp/p/9231554.html