图论分支-倍增Tarjan求LCA
LCA,最近公共祖先,这是树上最常用的算法之一,因为它可以求距离,也可以求路径等等
LCA有两种写法,一种是倍增思想,另一种是Tarjan求法,我们可以通过一道题来看一看,
题目描述
欢乐岛上有个非常好玩的游戏,叫做“紧急集合”。在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要花费一个游戏币。
参加游戏的人三人一组,开始的时候,所有人员均任意分散在各个等待点上(每个点同时允许多个人等待),每个人均带有足够多的游戏币(用于支付使用道路的花费)、地图(标明等待点之间道路连接的情况)以及对话机(用于和同组的成员联系)。当集合号吹响后,每组成员之间迅速联系,了解到自己组所有成员所在的等待点后,迅速在N个等待点中确定一个集结点,组内所有成员将在该集合点集合,集合所用花费最少的组将是游戏的赢家。
小可可和他的朋友邀请你一起参加这个游戏,由你来选择集合点,聪明的你能够完成这个任务,帮助小可可赢得游戏吗?
输入输出格式
输入格式:
第一行两个正整数N和M(N<=500000,M<=500000),之间用一个空格隔开。分别表示等待点的个数(等待点也从1到N进行编号)和获奖所需要完成集合的次数。 随后有N-1行,每行用两个正整数A和B,之间用一个空格隔开,表示编号为A和编号为B的等待点之间有一条路。 接着还有M行,每行用三个正整数表示某次集合前小可可、小可可的朋友以及你所在等待点的编号。
输出格式:
一共有M行,每行两个数P,C,用一个空格隔开。其中第i行表示第i次集合点选择在编号为P的等待点,集合总共的花费是C个游戏币。
输入输出样例
6 4
1 2
2 3
2 4
4 5
5 6
4 5 6
6 3 1
2 4 4
6 6 6
5 2
2 5
4 1
6 0 这个就用到了我们的LCA求解了,先用了Tarjan,然后被卡了(不能用O2)(之后再分析为什么会卡),用了倍增才过,根据题目,我们可以很容易地想到用lca来解决这个树上两点之间距离。树的剖分应该是正解吧(可惜我刚学,不太熟练 QAQ );
我们先看一下题目,是三个点到一个点的距离之和最小,图大家可以手模一下,我们设题中给的三个点为x,y,z,每两个点的lca是a,b,c. 距离前缀和数组设为dep[i];那么开始推导:肯定有lca是相同的,这个可以手动证明一下,这里就不再证明了,所以暂设 a==c=true ,那么, _dep[x]+dep[y]-2dep[a]+dep[z]-dep[b]+dep[a]-dep[b]==_dep[x]+dep[y]+dep[z]-2dep[a]-dep[b] ,然后大家应该就能懂了QAQ,之后还有通用公式 dep[x]+dep[y]+dep[z]-dep[a]-dep[b]-dep[c] ,只要再找到a,b,c中谁与其它两个不同即可;
然后附上Code
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int n,m,head[],cent,dep[],fa[][],len[];
struct node{
int next,to,w;
}edge[]; void add(int u,int v,int w){
edge[++cent]=(node){head[u],v,w};head[u]=cent;
} void dfs(int x,int dy){
dep[x]=dy;//求深度
for(int i=head[x];i;i=edge[i].next){
int y=edge[i].to;
if(y==fa[x][]) continue;
fa[y][]=x;
len[y]=len[x]+edge[i].w;//其实与深度一样
dfs(y,dy+);
}
return ;
} void Init(){
fa[][]=-;
dfs(,);
for(int i=;<<i<n;i++){//倍增
for(int j=;j<=n;j++){//更新每一个点
if(fa[j][i-]<) fa[j][i]=-;
else fa[j][i]=fa[fa[j][i-]][i-];
}
}
return ;
} int lca(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
for(int i=,d=dep[x]-dep[y];d;d>>=,i++){
if(d&) x=fa[x][i];//转移至同一高度
}
if(x==y) return x;
for(int i=log(n)+;i>=;i--){//寻找LCA
if(fa[x][i]!=fa[y][i]){//自己画图体会一下
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
} void work(int a,int b,int c){
int x=lca(a,b),y=lca(b,c),z=lca(a,c),exit;
if(x==y) exit=z;
else if(y==z) exit=x;
else if(x==z) exit=y;//寻找不同的LCA
printf("%d %d\n",exit,dep[a]+dep[b]+dep[c]-dep[x]-dep[y]-dep[z]);//通用公式计算
} int main(){
scanf("%d%d",&n,&m);
for(int i=,a,b;i<=n-;i++){
scanf("%d%d",&a,&b);
add(a,b,),add(b,a,);//存图
}
Init();//初始化
for(int i=,a,b,c;i<=m;i++){
scanf("%d%d%d",&a,&b,&c);
work(a,b,c);
}
return ;
}
至于为什么Tarjan没过而倍增过了,是因为我们统计倍增O(nlongn+mlongn),而实际上,大部分数据查询是不需要logn的,所以就将倍增算法捧上了天,而作为O(n+m)算法的Tarjan却栽了是因为并查集维护时,时间复杂度最坏达到了近O(n2+m),但是O(1)查询的Tarjan在一些数据确实比倍增算法快,但是,在一些非常诡异的数据中,还是用倍增比较妥当,来看代码
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int n,m,head[],cent,cnt,h[],dep[],vis[];
int fa[],f[],see[][],num[];
struct node{
int next,to,w;
}edge[];
struct node1{
int next,to,id;
}e[]; template<typename type_of_scan>
inline void scan(type_of_scan &x){
type_of_scan f=;x=;char s=getchar();
while(s<''||s>''){if(s=='-')f=-;s=getchar();}
while(s>=''&&s<=''){x=x*+s-'';s=getchar();}
x*=f;
} inline void add(int u,int v,int w){
edge[++cent]=(node){head[u],v,w};head[u]=cent;
} inline void add1(int u,int v,int name){
e[++cnt]=(node1){h[u],v,name};h[u]=cnt;
} inline int get(int x){
if(fa[x]==x) return x;
return fa[x]=get(fa[x]);
} inline void Tarjan(int u){
vis[u]=;
for(register int i=head[u];i;i=edge[i].next){
int v=edge[i].to;
if(vis[v]) continue;
dep[v]=dep[u]+edge[i].w;//与倍增一样
Tarjan(v);
fa[v]=u;
}
for(register int i=h[u];i;i=e[i].next){
int v=e[i].to;
if(vis[v]&&!f[e[i].id]){
int zz=get(v),x=e[i].id;
f[x]=zz;//储存答案
}
}//与倍增不同的是,它每次都去处理有关点数据,运用访问时间的差别,以来实现Tarjan
} inline void work(){
for(register int i=;i<=*m;i+=){
int x=see[i][],y=see[i][],z=see[i][];
int a=f[i],b=f[i+],c=f[i+];
if(a==b){
printf("%d %d\n",c,dep[x]+dep[y]+dep[z]-dep[a]-dep[b]-dep[c]);
}else if(b==c) {
printf("%d %d\n",a,dep[x]+dep[y]+dep[z]-dep[a]-dep[b]-dep[c]);
}else if(a==c) {
printf("%d %d\n",b,dep[x]+dep[y]+dep[z]-dep[a]-dep[b]-dep[c]);
} }
} int main(){
scan(n),scan(m);
for(int i=;i<=n;i++) fa[i]=i;
for(int i=,a,b;i<=n-;i++){
scan(a),scan(b);
add(a,b,),add(b,a,);
}
for(register int i=;i<=*m;i+=){
int a,b,c;
scan(a),scan(b),scan(c);//Tarjan储存询问,在工作时一起解决
see[i][]=a,see[i][]=b,see[i][]=c;
add1(a,b,i),add1(b,a,i),add1(a,c,i+);
add1(c,a,i+),add1(c,b,i+),add1(b,c,i+);
}
Tarjan();
work();
return ;
}
先说到这里
图论分支-倍增Tarjan求LCA的更多相关文章
- 倍增 Tarjan 求LCA
...
- 倍增\ tarjan求lca
对于每个节点v,记录anc[v][k],表示从它向上走2k步后到达的节点(如果越过了根节点,那么anc[v][k]就是根节点). dfs函数对树进行的dfs,先求出anc[v][0],再利用anc[v ...
- Tarjan求LCA
LCA问题算是一类比较经典的树上的问题 做法比较多样 比如说暴力啊,倍增啊等等 今天在这里给大家讲一下tarjan算法! tarjan求LCA是一种稳定高速的算法 时间复杂度能做到预处理O(n + m ...
- 详解使用 Tarjan 求 LCA 问题(图解)
LCA问题有多种求法,例如倍增,Tarjan. 本篇博文讲解如何使用Tarjan求LCA. 如果你还不知道什么是LCA,没关系,本文会详细解释. 在本文中,因为我懒为方便理解,使用二叉树进行示范. L ...
- tarjan求lca的神奇
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 【Tarjan】洛谷P3379 Tarjan求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- HDU 2586 倍增法求lca
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- SPOJ 3978 Distance Query(tarjan求LCA)
The traffic network in a country consists of N cities (labeled with integers from 1 to N) and N-1 ro ...
- 倍增法求LCA
倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可 ...
随机推荐
- hdu-2717(基础搜索bfs)
题意:给你n和k,问你n最少花费多少代价能得到k: 有两种变换:1.n++或者n--: 2.n=n*2: 两种代价每次的花费都是1: 思路:一维的bfs,每次入队三个点,一个是n+1,一个是n-1,一 ...
- Nginx stream ssl
L 115 端口监听 netstat -anp | (端口名)
- Nginx 如何处理上游响应的数据
陶辉93 一个非常重要的指令 proxy_buffer_size 指令限制头部响应header最大值 proxy_buffering 指令主要是指 上游服务器是否接受完完整包体在处理 默认是on 也就 ...
- 洛谷 P2119 魔法阵
题目描述 六十年一次的魔法战争就要开始了,大魔法师准备从附近的魔法场中汲取魔法能量. 大魔法师有mm个魔法物品,编号分别为1,2,...,m1,2,...,m.每个物品具有一个魔法值,我们用X_iXi ...
- python----函数初识
一,什么是函数? 现在有这么个情况:python中的len方法不让用了,你怎么办? 来测试一下‘hello word’ 的长度: s1 = "hello world" length ...
- HTC Vive 基础入门 基于Unreal Engine 4引擎
主要以讲解介绍HTC Vive设备以及Unreal继承的Steam VR Plugin为主 使用最新的虚幻引擎与Plugin完成VR环境的搭建 然后完成一个基本的VR Games. 任务5: 04-配 ...
- BZOJ2160拉拉队排练——回文自动机
题目描述 艾利斯顿商学院篮球队要参加一年一度的市篮球比赛了.拉拉队是篮球比赛的一个看点,好的拉拉队往往能帮助球队增加士气,赢得最终的比赛.所以作为拉拉队队长的楚雨荨同学知道,帮助篮球队训练好拉拉队有多 ...
- AIM Tech Round 4 Div. 1
A:显然最优方案是对所形成的置换的每个循环排个序. #include<iostream> #include<cstdio> #include<cmath> #inc ...
- c# Redis 使用
1.服务端两个版本窗口版与安装windows服务版 1.1.窗口版 下载地址:https://github.com/dmajkic/redis/downloads redis-server.exe:服 ...
- Android stadio 生成项目 Plugin with id 'com.android.application' not found
buildscript { repositories { jcenter() } dependencies { classpath 'com.android.tools.build:gradle:2. ...