基准时间限制:1 秒 空间限制:131072 KB 分值: 80

函数f(n,m)

{

若n=1或m=1返回a[n][m];

返回f(n-1,m)异或f(n,m-1);

}

读入2<=n,m<=100

for i=2->100读入a[1][i]

for i=2->100读入a[i][1]

输出f(n,m)

发现当n,m较大时程序变得异常缓慢。

小b经过一番思考,很快解决了这个问题。

这时小c出现了,我将n,m都增加131072,你还能解决吗?

相对的,我会读入2->131172的所有a[1][i]和a[i][1]。

小b犯了难,所以来找你,你能帮帮他吗?

Input
第一行读入131171个正整数,表示i=2->131172的a[1][i](1<=a[1][i]<=1000000000)。
第二行读入131171个正整数,表示i=2->131172的a[i][1](1<=a[i][1]<=1000000000)。
第三行读入一个正整数Q(1<=Q<=10000),表示询问的次数。
接下来Q行,每行两个数n,m(2<=n,m<=100),表示每一组询问。
Output
Q行,每行为f(n+131072,m+131072)
Input示例
2 3 4 5 6 7 8 … 131171 131172
2 3 4 5 6 7 8 … 131171 131172
3
2 2
2 3
2 4
Output示例
0
0
131072 考虑一个点(0, 0)对某一个点(n, m)的贡献次数为C(c + m, n),所以这里在计算f(n, m)时,只要知道第一行和第一列的每个数贡献的次数是基奇数此还是偶数次,也就是计算C(n+m, m)是奇数还是偶数, 那么只要知道n!里的2的个数G(n),那么如果有G(n + m) = G(n) + G(m),此时这个组合数就是偶数,否则为奇数。
由于f(n, m) = f(n - 1, m) + f(n, m - 1),只要知道对于f(131074, 131074...131172)与f(131074...131172, 131074)的每个值就好了(其他的可以由这些推过来)
 #pragma comment(linker, "/STACK:1677721600")
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <bitset>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf (-((LL)1<<40))
#define lson k<<1, L, (L + R)>>1
#define rson k<<1|1, ((L + R)>>1) + 1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i, a, b) for(int i = a; i <= b; i ++)
#define dec(i, a, b) for(int i = a; i >= b; i --) //typedef __int64 LL;
typedef long long LL;
typedef pair<int, int> Pair;
const int MAXN = + ;
const int MAXM = ;
const double eps = 1e-;
LL MOD = ; const int N = ;
const LL mod = ; int f[];
int ans[][];
int r[], c[]; void init(int n) {
f[] = f[] = ;
rep (i, , n) {
int num = , x = i;
while(x % == ) num++, x /= ;
f[i] = f[i - ] + num;
}
} int judge(int n, int m) {
return f[n] == f[m] + f[n - m];
} int calc(int n, int m) {
int ans = ;
rep (i, , m) ans ^= c[i] * judge(n - + m - i, m - i);
rep (i, , n) ans ^= r[i] * judge(n - i + m - , m - );
return ans;
} int main()
{
//FIN;
//FOUT;
init();
rep (i, , ) scanf("%d", &c[i]);
rep (i, , ) scanf("%d", &r[i]);
rep (i, , ) ans[][i - ] = calc(, i);
rep (i, , ) ans[i - ][] = calc(i, );
rep (i, , ) {
rep (j, , ) {
ans[i][j] = ans[i - ][j] ^ ans[i][j - ];
}
}
int q, n, m;
cin >> q;
while(q --) {
scanf("%d %d", &n, &m);
printf("%d\n", ans[n][m]);
}
return ;
}

51nod 算法马拉松4 B递归(YY)的更多相关文章

  1. 51NOD 算法马拉松8

    题目戳这里:51NOD算法马拉松8 某天晚上kpm在玩OSU!之余让我看一下B题...然后我就被坑进了51Nod... A.还是01串 水题..怎么乱写应该都可以.记个前缀和然后枚举就行了.时间复杂度 ...

  2. 51nod 算法马拉松 34 Problem D 区间求和2 (FFT加速卷积)

    题目链接  51nod 算法马拉松 34  Problem D 在这个题中$2$这个质数比较特殊,所以我们先特判$2$的情况,然后仅考虑大于等于$3$的奇数即可. 首先考虑任意一个点对$(i, j)$ ...

  3. 随便玩玩系列之一:SPOJ-RNG+51nod 算法马拉松17F+51nod 1034 骨牌覆盖v3

    先说说前面的SPOJ-RNG吧,题意就是给n个数,x1,x2,...,xn 每次可以生成[-x1,x1]范围的浮点数,把n次这种操作生成的数之和加起来,为s,求s在[A,B]内的概率 连续形的概率 假 ...

  4. 51Nod 算法马拉松21(迎新年)

    这次打算法马拉松是在星期五的晚上,发挥还算正常(废话,剩下的题都不会= =). 讲讲比赛经过吧. 8:00准时发题,拿到之后第一时间开始读. A配对,看上去像是二分图最大权匹配,一看范围吓傻了,先跳过 ...

  5. 51Nod 算法马拉松15 记一次悲壮而又开心的骗分比赛

    OwO 故事的起源大概是zcg前天发现51Nod晚上有场马拉松,然后他就很开心的过去打了 神奇的故事就开始了: 晚上的时候我当时貌似正在写线段树?然后看见zcg一脸激动告诉我第一题有九个点直接输出B就 ...

  6. 51Nod 算法马拉松23 开黑记

    惨啊……虽然开了半天黑,但是还是被dalao们踩了…… 第二次开黑,还是被卡在rank20了,我好菜啊……= = 写一写比赛经过吧…… 看到题之后习惯性都打开,A~D看上去似乎并没有什么思路,F应该是 ...

  7. 51Nod 算法马拉松22 开黑记

    这是一场惨烈的开黑大战,始于全机房开黑指望刷进rank前十拿钱的壮志,终于被各路神犇怒踩成rank20,差点200点头盾不保的落魄,想起将近一年前ad和zcg等学长挤进rank10的壮举,不由得唏嘘, ...

  8. 51nod算法马拉松 contest7

    A题 链接:http://www.51nod.com/contest/problem.html#!problemId=1417 推荐链接:http://blog.csdn.net/a837199685 ...

  9. 51nod算法马拉松15

    智力彻底没有了...看来再也拿不到奖金了QAQ... A B君的游戏 因为数据是9B1L,所以我们可以hash试一下数据... #include<cstdio> #include<c ...

随机推荐

  1. 牛客国庆集训派对Day7 Solution

    A    Relic Discovery 水. #include <bits/stdc++.h> using namespace std; int t, n; int main() { s ...

  2. IDEA,与gradle引入jar包报错

    Warning:<i><b>root project 'netty_lecture': Unable to resolve additional project configu ...

  3. PHP中使用OpenSSL下openssl_verify验证签名案例

    使用OpenSSL那么需要先了解一下http://www.cnblogs.com/wt645631686/p/8390936.html <?php //demo $json = '{" ...

  4. Java判断字符串是否符合yyyyMMdd日期格式

    Java判断字符串是否符合yyyyMMdd日期格式 代码: /** * 判断参数的格式是否为“yyyyMMdd”格式的合法日期字符串 * */ public static boolean isVali ...

  5. kali_install_complete_no_sound

    参考:http://tieba.baidu.com/p/4343219808 用pulseaudio --start会看到一些信息,提示类似root用户之类的 我是用下面这个方法搞定的 systemc ...

  6. 在Github上搭建博客

    貌似还是这个链接最靠谱呀 http://my.oschina.net/nark/blog/116299   如何利用github建立个人博客:之一 在线编辑器http://markable.in/ed ...

  7. Mac 下安装Java

    下载:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 打开下载的文件,出现如下 ...

  8. 100W数据,测试索引

    两张表,结构相同,数据内容相同.唯一不同的就是是否包含索引.tf_user_index表中包含索引. 这100w数据,我造了近一天时间. mysql> select count(*) from ...

  9. 【测试设计】性能测试工具选择:wrk?jmeter?locust?还是LR?

    原文链接:http://www.51testing.com/html/49/n-3721249.html 前言 当你想做性能测试的时候,你会选择什么样的测试工具呢?是会选择wrk?jmeter?loc ...

  10. kissy初体验-waterfall

    目录: 1. 功能介绍 2. waterfall样例展示 3. 使用说明 4. 遇到过的问题 5. 总结 1. 功能介绍 现在越来越多的网站开始瀑布流方式布局,瀑布流式布局(百度百科:瀑布流),是比较 ...