题面

传送门

分数规划

分数规划有什么用?

可以把带分数的最优性求解式化成不带除发的运算

假设求max{\(\frac{a}{b},b>0\)}

二分一个权值\(k\)

令\(\frac{a}{b}\le k\)那么\(a-k*b\le 0\)

如果得出来\(a-k*b\)的最大值大于\(0\),那么\(k\)可以变大

否则缩小\(k\)

Sol

分数规划,然后求解负环即可

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} const int maxn(3005);
const int maxm(1e4 + 5);
const double eps(1e-9); int n, m, first[maxn], cnt, vis[maxn];
double dis[maxn], l = 1e7, r = -1e7; struct Edge{
int to, next;
double w;
} edge[maxm]; IL void Add(RG int u, RG int v, RG double w){
edge[cnt] = (Edge){v, first[u], w}, first[u] = cnt++;
} IL int Dfs(RG int u, RG double w){
vis[u] = 1;
for(RG int e = first[u]; e != -1; e = edge[e].next){
RG int v = edge[e].to;
RG double d = dis[u] + edge[e].w - w;
if(dis[v] - d >= eps){
dis[v] = d;
if(vis[v] || Dfs(v, w)) return 1;
}
}
vis[u] = 0;
return 0;
} IL int Check(RG double v){
for(RG int i = 1; i <= n; ++i) dis[i] = 0, vis[i] = 0;
for(RG int i = 1; i <= n; ++i) if(Dfs(i, v)) return 1;
return 0;
} int main(){
n = Input(), m = Input();
for(RG int i = 1; i <= n; ++i) first[i] = -1;
for(RG int i = 1; i <= m; ++i){
RG int u = Input(), v = Input(), w = Input();
Add(u, v, w), l = min(l, -1.0 * abs(w)), r = max(r, 1.0 * abs(w));
}
while(r - l >= eps){
RG double mid = (l + r) / 2.0;
if(Check(mid)) r = mid;
else l = mid;
}
printf("%.8lf\n", r);
return 0;
}

分数规划(Bzoj1486: [HNOI2009]最小圈)的更多相关文章

  1. BZOJ1486 HNOI2009 最小圈 【01分数规划】

    BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...

  2. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  3. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  4. [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环

    题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...

  5. bzoj1486: [HNOI2009]最小圈

    二分+dfs. 这道题求图的最小环的每条边的权值的平均值μ. 这个平均值是大有用处的,求它我们就不用记录这条环到底有几条边构成. 如果我们把这个图的所有边的权值减去μ,就会出现负环. 所以二分求解. ...

  6. BZOJ1486:[HNOI2009]最小圈(最短路,二分)

    Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Sample Output 3.66666667 Sol ...

  7. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

  8. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  9. 【BZOJ1486】最小圈(分数规划)

    [BZOJ1486]最小圈(分数规划) 题面 BZOJ 洛谷 求图中边权和除以点数最小的环 题解 分数规划 二分答案之后将边权修改为边权减去二分值 检查有无负环即可 #include<iostr ...

随机推荐

  1. Ionic2 启动加载优化总结

    1. ionic2通过ionic serve生成的main.js大于4M,必须先build才能部署 npm run ionic:build --prod 之后main.js缩小为大概100K+ 2. ...

  2. P1642 规划

    题目链接 题意分析 一看就知道是一道\(01\)分数规划的题 我们二分值之后 跑树形背包就可以了 CODE: #include<iostream> #include<cstdio&g ...

  3. mfix输出自定义数据

    有时候需要输出一些自定义的网格或者DEM颗粒信息,比如输出颗粒的受力,这里举例颗粒自定义数据的输出.网格自定义输出方法类似. 首先用FileLocatorPro(网上很多绿色版),搜索一下代码里mod ...

  4. 【NOI2019十二省联合省选】部分题简要题解

    Day 1 T1 异或粽子 题意:给出一个长为n的序列,选择K个不完全重合的区间使得每个区间的异或值的总和最大. 题解:先做一个前缀异或和,对于每一个右端点我们记录三元组(l,r,x)表示在左端点在\ ...

  5. 防止过拟合:L1/L2正则化

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  6. mysql使用常见问题

    常见问题之一: 启动mysql时显示: The server quit without updating PID file 1.可能是/usr/local/mysql/data/mysql.pid文件 ...

  7. java.lang.Exception: The server rejected the connection: None of the protocols were accepted

    solution for this is from comment for https://issues.jenkins-ci.org/browse/JENKINS-29616. The follow ...

  8. (7.0 version)当销售单中包含service或phantom类型的产品时,销售单不能完成的原因分析及解决方案

    首先说一下service类型的产品,由于该类型的产品不需要发货,所以当在销售订单确认了后,销售单直接变成了等待开票的状态,但当开票的流程结束后,订单却还是停在销售单的状态上,该问题的解决方案是安装Ta ...

  9. Mac下安装Fiddler抓包工具(别试了,会报错,没办法使用)

    下载: https://www.telerik.com/download/fiddler 离线版本:(链接: https://pan.baidu.com/s/1hr7f8QK 密码: ukg2) 安装 ...

  10. (转)OpenStack之服务端口号

    原文:https://blog.csdn.net/henulwj/article/details/47276391 在部署openstack的过程中,你会遇到配置各种服务的endpoint,opens ...