【BZOJ2436】NOI嘉年华(动态规划)

题面

BZOJ

题解

考虑第一问如何求解

发现状态与选择了哪些活动无关,只与时间有关

设\(f[i][j]\)表示前\(i\)个单位时间(离散后),一个嘉年华选择了\(j\)个活动时

另外一个可以选择的最多的活动数量

转移的话枚举一下转移过来的时间\(k\)

考虑时间\([k..i]\)的活动分配给哪个嘉年华就好了

所以\(f[i][j]=max(f[k][j]+sum[k][i],f[k][j-sum[k][i]])\)

其中\(sum[i][j]\)表示时间\([i,j]\)中能够进行的所有活动的数量。

时间复杂度\(O(n^3)\)

考虑第二问

显然是中间一段强制选,然后剩下的地方被拆成了两段

然后考虑最大值。

注意,这强制选的一段不一定恰好是当前必须选的活动的这一段时间

而是可以向两边拓展

所以我们需要先预处理\(dp[i][j]\)表示时间\([i,j]\)的所有活动必须选择的最优值

设\(g[i][j]\)和\(f\)表示相同的含义,但是时间不是\([1,i]\)而是\([i,n]\),即倒着选。

枚举前面和后面分割出来的时间某个嘉年华分别选择了几个活动,

这样很容易转移,相当于是把中间强制选择的那段时间的所有活动直接加给活动较少的那个嘉年华。

但是这样的复杂度是\(O(n^4)\)的。

我们需要优化这个转移,假设枚举选择了多少个活动的那个嘉年华

在强制选择的区间的前面选了\(x\)个活动,后面选了\(y\)个活动

发现当\(x\)增大时,另外一个嘉年华能够选择的个数会减小,

而中间强制选择的区间的值不会变化,如果继续增加\(y\)的话,发现另外一个嘉年华能够选择的值也会更小,所以\(x\)增加时,\(y\)减少。

这样子可以利用单调性优化掉一个\(n\),时间复杂度变为\(O(n^3)\)。

每次回答询问的时候,确定当前强制选择的活动左右端点,暴力向左右拓展就好了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 444
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int L[MAX],R[MAX],S[MAX],tot,num[MAX][MAX];
int f[MAX][MAX],g[MAX][MAX],d[MAX][MAX],ans,n;
void cmax(int &x,int y){if(x<y)x=y;}
int Calc(int i,int j,int x,int y)
{
if(f[i][x]<0||g[j][y]<0)return -1e9;
int t=f[i][x]+g[j][y];
return min(max(t,x+y),min(t,x+y)+num[i][j]);
}
int main()
{
n=read();
for(int i=1;i<=n;++i)L[i]=read(),R[i]=read()+L[i];
for(int i=1;i<=n;++i)S[++tot]=L[i],S[++tot]=R[i];
sort(&S[1],&S[tot+1]);tot=unique(&S[1],&S[tot+1])-S-1;
for(int i=1;i<=n;++i)L[i]=lower_bound(&S[1],&S[tot+1],L[i])-S;
for(int i=1;i<=n;++i)R[i]=lower_bound(&S[1],&S[tot+1],R[i])-S;
for(int i=0;i<=tot+1;++i)
for(int j=i;j<=tot+1;++j)
for(int k=1;k<=n;++k)
if(i<=L[k]&&R[k]<=j)++num[i][j];
memset(f,-63,sizeof(f));f[0][0]=0;
for(int i=1;i<=tot;++i)
for(int j=0;j<=n;++j)
for(int k=0;k<i;++k)
{
cmax(f[i][j],f[k][j]+num[k][i]);
if(j>=num[k][j])cmax(f[i][j],f[k][j-num[k][i]]);
}
for(int i=1;i<=tot;++i)ans=max(ans,min(i,f[tot][i]));
printf("%d\n",ans);
memset(g,-63,sizeof(g));g[tot+1][0]=0;
for(int i=tot;i;--i)
for(int j=0;j<=n;++j)
for(int k=i+1;k<=tot+1;++k)
{
cmax(g[i][j],g[k][j]+num[i][k]);
if(j>=num[k][j])cmax(g[i][j],g[k][j-num[i][k]]);
}
for(int i=1;i<=tot;++i)
for(int j=i;j<=tot;++j)
if(num[i][j])
{
int y=n;
for(int x=0;x<=n;++x)
{
int nw=Calc(i,j,x,y);
while(y)
{
int nt=Calc(i,j,x,y-1);
if(nw<=nt)--y,nw=nt;
else break;
}
d[i][j]=max(d[i][j],nw);
}
}
for(int i=1;i<=n;++i)
{
ans=0;
for(int j=1;j<=L[i];++j)
for(int k=R[i];k<=tot;++k)
ans=max(ans,d[j][k]);
printf("%d\n",ans);
}
return 0;
}

【BZOJ2436】【NOI2011】NOI嘉年华(动态规划)的更多相关文章

  1. BZOJ2436 [Noi2011]Noi嘉年华 【dp】

    题目链接 BZOJ2436 题解 看这\(O(n^3)\)的数据范围,可以想到区间\(dp\) 发现同一个会场的活动可以重叠,所以暴力求出\(num[l][r]\)表示离散化后\([l,r]\)的完整 ...

  2. bzoj2436: [Noi2011]Noi嘉年华

    我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...

  3. 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

    2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...

  4. 2436: [Noi2011]Noi嘉年华 - BZOJ

    Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...

  5. bzoj 2436: [Noi2011]Noi嘉年华

    Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...

  6. luogu P1973 [NOI2011]NOI 嘉年华 dp

    LINK:NOI 嘉年华 一道质量非常高的dp题目. 考虑如何求出第一问 容易想到dp. 按照左端点排序/右端点排序状态还是很难描述. 但是我们知道在时间上肯定是一次选一段 所以就可以直接利用时间点来 ...

  7. 洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)

    洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转 ...

  8. NOI2011 NOI嘉年华

    http://www.lydsy.com/JudgeOnline/problem.php?id=2436 首先离散化,离散化后时间范围为[1,cnt]. 求出H[i][j],表示时间范围在[i,j]的 ...

  9. 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)

    传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...

  10. cogs 1377. [NOI2011] NOI嘉年华 (dp

    题意:给你n个活动的起止时间,要你从中选一些活动在2个会场安排(不能有两个活动在两个会场同时进行),使活动较少的会场活动数最大,以及在某个活动必须选择的前提下,求该答案. 思路:由于n很小,时间很大, ...

随机推荐

  1. TW实习日记:第十天

    今天任务很简单,就是出品项目的时间轴显示页面和动态路由设置.其实时间轴页面很快就做完了,在做完处理完数据之后,然而有很多细节需要打磨,这就又考验了我面向搜索引擎编程的能力,根据需求百度了很多css的样 ...

  2. MySQL高性能优化实战总结

    1.1 前言 MySQL对于很多Linux从业者而言,是一个非常棘手的问题,多数情况都是因为对数据库出现问题的情况和处理思路不清晰.在进行MySQL的优化之前必须要了解的就是MySQL的查询过程,很多 ...

  3. dotnet服务器端框架从精通到弃坑

    当你们看到这篇经验分享的时候,我已经把服务器端主要力量转到JAVA了. 纯当留念. 另外里面实现oauth2.0的部分就不写了,因为特殊性太强,完全根据自家需求结合它的理念改写的. 为什么我会选择sp ...

  4. sql脚本创建用户角色权限表

    /******************************************/ /* 名称:权限管理 */ /* 编写日期:2010.5.20 */ /* 开发者:dangqinghua * ...

  5. mysql数据库查询

    查询数据指从数据库中获取所需要的数据.查询数据是数据库操作中最常用,也是最重要的操作.用户可以根据自己对数据的需求,使用不同的查询方式.通过不同的查询方式,可以获得不同的数据.MySQL中是使用SEL ...

  6. action访问servlet的API并且获取到MAP或者httpServlet类型的application,session,request

    public class testAction3 extends ActionSupport { private Map<String,Object> request; private M ...

  7. [图算法] 1003. Emergency (25)

    As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...

  8. 1."问吧APP"客户需求调查分析

    产品名称:问吧 产品功能:实时提问回答和搜索 开发原因:任何人都会遇到问题,网上虽然有很多回答,但是互联网的信息错综复杂,开发这个APP就是为了让网络求助更加的合理有效,清除网络上的垃圾信息. 为知大 ...

  9. 一次性无重复配置VS项目插件属性的方法

    在VS中需要使用opencv开源库或mysql等数据库时,为了能使用开源库或数据库的语言,需要添加库文件和包含目录等等.然而直接在[解决方案管理器]-->属性中配置的话,写下一个项目(解决方案) ...

  10. 分布式架构核心RPC原理

    在应用的迭代演进过程中,随着系统访问量提高,业务复杂度提高,代码复杂度提高,应用逐渐从单体式架构向面向服务的分布式架构转变.RPC(Remote Procedure Call Protocol远程过程 ...