洛谷 P4169 [Violet]天使玩偶/SJY摆棋子 解题报告
P4169 [Violet]天使玩偶/SJY摆棋子
题目描述
\(Ayu\)在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下。而七年后 的今天,\(Ayu\) 却忘了她把天使玩偶埋在了哪里,所以她决定仅凭一点模糊的记忆来寻找它。
我们把 \(Ayu\) 生活的小镇看作一个二维平面坐标系,而 \(Ayu\) 会不定时地记起可能在某个点 \((x,y)\) 埋下了天使玩偶;或者 \(Ayu\) 会询问你,假如她在 \((x,y)\) ,那么她离近的天使玩偶可能埋下的地方有多远。
因为 \(Ayu\) 只会沿着平行坐标轴的方向来行动,所以在这个问题里我们定义两个点之间的距离为\(dist(A,B)=|A_x-B_x|+|A_y-B_y|\)。其中 \(A_x\) 表示点 \(A\) 的横坐标,其余类似。
输入输出格式
输入格式:
第一行包含两个整数\(n\)和\(m\) ,在刚开始时,\(Ayu\) 已经知道有\(n\)个点可能埋着天使玩偶, 接下来 \(Ayu\) 要进行 \(m\) 次操作
接下来\(n\)行,每行两个非负整数 \((x_i,y_i)\),表示初始 \(n\) 个点的坐标。
再接下来 \(m\) 行,每行三个非负整数 \(t,x_i,y_i\)。
如果 \(t=1\) ,则表示 \(Ayu\) 又回忆起了一个可能埋着玩偶的点 \((x_i,y_i)\) 。
如果 \(t=2\) ,则表示 \(Ayu\) 询问如果她在点 \((x_i,y_i)\) ,那么在已经回忆出来的点里,离她近的那个点有多远
输出格式:
对于每个\(t=2\)的询问,在单独的一行内输出该询问的结果。
说明
\(n,m\le 300 000\)
\(x_i,y_i\le 1 000 000\)
明明思路很简单..
最近状态不好啊..
考虑拆掉绝对值,然后我们会多出两个类似于偏序类型的条件,然后配合上时间,就是一个三维偏序问题了。
讨论四次可以转换一下坐标系。
注意位置是0的东西
懒得卡常吸氧气了
Code:
// luogu-judger-enable-o2
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
const int N=6e5+10;
const int M=1e6;
int n,m,k,s[M+10],ans[N];
inline int read()
{
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) {x=x*10+c-'0';c=getchar();}
return x;
}
struct node{int op,x,y;}q[N],qs[N],sq[N];
int min(int x,int y){return x<y?x:y;}
void add(int x,int d){while(x<=M)s[x]=s[x]>d?s[x]:d,x+=x&-x;}
void Clear(int x){while(x<=M)s[x]=0,x+=x&-x;}
int ask(int x){int mx=0;while(x)mx=mx>s[x]?mx:s[x],x-=x&-x;return mx==0?-M:mx;}
void CDQ(int l,int r)
{
if(l==r) return;
int mid=l+r>>1;
CDQ(l,mid),CDQ(mid+1,r);
register int lp=l,rp=mid+1,loc=l-1;
while(lp<=mid&&rp<=r)
{
if(q[lp].x<=q[rp].x)
{
if(!q[lp].op) add(q[lp].y,q[lp].x+q[lp].y);
sq[++loc]=q[lp++];
}
else
{
if(q[rp].op) ans[q[rp].op]=min(ans[q[rp].op],q[rp].x+q[rp].y-ask(q[rp].y));
sq[++loc]=q[rp++];
}
}
while(rp<=r)
{
if(q[rp].op) ans[q[rp].op]=min(ans[q[rp].op],q[rp].x+q[rp].y-ask(q[rp].y));
sq[++loc]=q[rp++];
}
for(register int i=l;i<lp;i++) if(!q[i].op) Clear(q[i].y);
while(lp<=mid) sq[++loc]=q[lp++];
for(register int i=l;i<=r;i++) q[i]=sq[i];
}
int main()
{
memset(ans,0x3f,sizeof(ans));
n=read(),m=read();
for(int i=1;i<=n;i++) qs[i].x=read()+1,qs[i].y=read()+1;
for(int i=1;i<=m;i++)
{
qs[i+n].op=read(),qs[i+n].x=read()+1,qs[i+n].y=read()+1;
if(--qs[i+n].op) qs[i+n].op=++k;
}
for(int i=1;i<=n+m;i++)
q[i]=qs[i];
CDQ(1,n+m);
for(int i=1;i<=n+m;i++)
q[i]={qs[i].op,M-qs[i].x,qs[i].y};
CDQ(1,n+m);
for(int i=1;i<=n+m;i++)
q[i]={qs[i].op,qs[i].x,M-qs[i].y};
CDQ(1,n+m);
for(int i=1;i<=n+m;i++)
q[i]={qs[i].op,M-qs[i].x,M-qs[i].y};
CDQ(1,n+m);
for(int i=1;i<=k;i++) printf("%d\n",ans[i]);
return 0;
}
2018.11.28
洛谷 P4169 [Violet]天使玩偶/SJY摆棋子 解题报告的更多相关文章
- 洛谷P4169 [Violet]天使玩偶/SJY摆棋子(CDQ分治)
[Violet]天使玩偶/SJY摆棋子 题目传送门 解题思路 用CDQ分治开了氧气跑过. 将输入给的顺序作为第一维的时间,x为第二维,y为第三维.对于距离一个询问(ax,ay),将询问分为四块,左上, ...
- 洛谷P4169 [Violet]天使玩偶/SJY摆棋子
%%%神仙\(SJY\) 题目大意: 一个二维平面,有两种操作: \(1.\)增加一个点\((x,y)\) \(2.\)询问距离\((x,y)\)曼哈顿最近的一个点有多远 \(n,m\le 300 0 ...
- bzoj2716/2648 / P4169 [Violet]天使玩偶/SJY摆棋子
P4169 [Violet]天使玩偶/SJY摆棋子 k-d tree 模板 找了好几天才发现输出优化错了....真是zz...... 当子树非常不平衡时,就用替罪羊树的思想,拍扁重建. luogu有个 ...
- P4169 [Violet]天使玩偶/SJY摆棋子
题目背景 感谢@浮尘ii 提供的一组hack数据 题目描述 Ayu 在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,Ayu 却忘了她把天使玩偶埋在了哪里,所以她决定仅 ...
- Luogu P4169 [Violet]天使玩偶/SJY摆棋子
传送门 二维平面修改+查询,cdq分治可以解决. 求关于某个点曼哈顿距离(x,y坐标)最近的点——dis(A,B) = |Ax-Bx|+|Ay-By| 但是如何去掉绝对值呢? 查看题解发现假设所有的点 ...
- luoguP4169 [Violet]天使玩偶/SJY摆棋子 K-Dtree
P4169 [Violet]天使玩偶/SJY摆棋子 链接 luogu 思路 luogu以前用CDQ一直过不去. bzoj还是卡时过去的. 今天终于用k-dtree给过了. 代码 #include &l ...
- [Violet]天使玩偶/SJY摆棋子 [cdq分治]
P4169 [Violet]天使玩偶/SJY摆棋子 求离 \((x,y)\) 最近点的距离 距离的定义是 \(|x1-x2|+|y1-y2|\) 直接cdq 4次 考虑左上右上左下右下就可以了-略微卡 ...
- 【LG4169】[Violet]天使玩偶/SJY摆棋子
[LG4169][Violet]天使玩偶/SJY摆棋子 题面 洛谷 题解 至于\(cdq\)分治的解法,以前写过 \(kdTree\)的解法好像还\(sb\)一些 就是记一下子树的横.纵坐标最值然后求 ...
- LG4169 [Violet]天使玩偶/SJY摆棋子
题意 Ayu 在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,Ayu 却忘了她把天使玩偶埋在了哪里,所以她决定仅凭一点模糊的记忆来寻找它. 我们把 Ayu 生活的小镇 ...
随机推荐
- TCP的三次握手和四次分手
TCP的三次握手 图解: • 第一次握手:客户端发送syn包到服务器,并进入syn_send状态,等待服务器进行确认: • 第二次握手:服务器收到客户端的syn包,必须确认客户的SYN,同时自 ...
- Windows网络通信(一):socket同步编程
网络通信常用API 1. WSAStartup用于初始化WinSock环境 int WSAStartup( WORD wVersionRequested, LPWSADATA lpWSAData ); ...
- stl源码分析之allocator
allocator封装了stl标准程序库的内存管理系统,标准库的string,容器,算法和部分iostream都是通过allocator分配和释放内存的.标准库的组件有一个参数指定使用的allocat ...
- redis sentinel介绍
目录 配置redis主从复制 使用ping命令检查是否启动 主节点查看链接信息 开始部署sentinel 节点 部署sentinel 启动sentinel 演示下故障转移 查看当前sentinel监控 ...
- appium自动化环境搭建
1.java开发环境JDK 2.android SDK(platform/platform tools/tools/build tools) 3.python下载安装(pip) 4.appium下载安 ...
- JUC——JUC开发简介(一)
前言 JUC是Java5.0开始提供的一组专门实现多线程并发处理的开发框架,利用JUC开发架构可以有效的解决实际线程项目开发之中出现的死锁.阻塞.资源访问与公平机制. 此笔记主要记录java.util ...
- nginx 源码阅读 core
ngx_config.h 数据对齐 #define ngx_align(d, a) (((d) + (a - 1)) & ~(a - 1)) ngx_core.h #define ng ...
- Windows和Linux系统如何退出python命令行
python命令行是新手学习python过程中必须要学的一个工具,下面我们来看一下怎么退出python命令行. 第一种方式: 使用python提供的exit()函数,linux平台和windows平台 ...
- PReLU——Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
1. 摘要 在 \(ReLU\) 的基础上作者提出了 \(PReLU\),在几乎没有增加额外参数的前提下既可以提升模型的拟合能力,又能减小过拟合风险. 针对 \(ReLU/PReLU\) 的矫正非线性 ...
- C/C++学习计划
学习内容:C语言程序设计精髓/计算机程序设计(C++) 学习理由:基础比较薄弱,想先打好基础. 时间安排:每天学习两课时. mooc地址:http://www.icourse163.org/home. ...