P4169 [Violet]天使玩偶/SJY摆棋子

题目描述

\(Ayu\)在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下。而七年后 的今天,\(Ayu\) 却忘了她把天使玩偶埋在了哪里,所以她决定仅凭一点模糊的记忆来寻找它。

我们把 \(Ayu\) 生活的小镇看作一个二维平面坐标系,而 \(Ayu\) 会不定时地记起可能在某个点 \((x,y)\) 埋下了天使玩偶;或者 \(Ayu\) 会询问你,假如她在 \((x,y)\) ,那么她离近的天使玩偶可能埋下的地方有多远。

因为 \(Ayu\) 只会沿着平行坐标轴的方向来行动,所以在这个问题里我们定义两个点之间的距离为\(dist(A,B)=|A_x-B_x|+|A_y-B_y|\)。其中 \(A_x\) 表示点 \(A\) 的横坐标,其余类似。

输入输出格式

输入格式:

第一行包含两个整数\(n\)和\(m\) ,在刚开始时,\(Ayu\) 已经知道有\(n\)个点可能埋着天使玩偶, 接下来 \(Ayu\) 要进行 \(m\) 次操作

接下来\(n\)行,每行两个非负整数 \((x_i,y_i)\),表示初始 \(n\) 个点的坐标。

再接下来 \(m\) 行,每行三个非负整数 \(t,x_i,y_i\)。

如果 \(t=1\) ,则表示 \(Ayu\) 又回忆起了一个可能埋着玩偶的点 \((x_i,y_i)\) 。

如果 \(t=2\) ,则表示 \(Ayu\) 询问如果她在点 \((x_i,y_i)\) ,那么在已经回忆出来的点里,离她近的那个点有多远

输出格式:

对于每个\(t=2\)的询问,在单独的一行内输出该询问的结果。

说明

\(n,m\le 300 000\)

\(x_i,y_i\le 1 000 000\)


明明思路很简单..

最近状态不好啊..

考虑拆掉绝对值,然后我们会多出两个类似于偏序类型的条件,然后配合上时间,就是一个三维偏序问题了。

讨论四次可以转换一下坐标系。

注意位置是0的东西

懒得卡常吸氧气了


Code:

// luogu-judger-enable-o2
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
const int N=6e5+10;
const int M=1e6;
int n,m,k,s[M+10],ans[N];
inline int read()
{
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) {x=x*10+c-'0';c=getchar();}
return x;
}
struct node{int op,x,y;}q[N],qs[N],sq[N];
int min(int x,int y){return x<y?x:y;}
void add(int x,int d){while(x<=M)s[x]=s[x]>d?s[x]:d,x+=x&-x;}
void Clear(int x){while(x<=M)s[x]=0,x+=x&-x;}
int ask(int x){int mx=0;while(x)mx=mx>s[x]?mx:s[x],x-=x&-x;return mx==0?-M:mx;}
void CDQ(int l,int r)
{
if(l==r) return;
int mid=l+r>>1;
CDQ(l,mid),CDQ(mid+1,r);
register int lp=l,rp=mid+1,loc=l-1;
while(lp<=mid&&rp<=r)
{
if(q[lp].x<=q[rp].x)
{
if(!q[lp].op) add(q[lp].y,q[lp].x+q[lp].y);
sq[++loc]=q[lp++];
}
else
{
if(q[rp].op) ans[q[rp].op]=min(ans[q[rp].op],q[rp].x+q[rp].y-ask(q[rp].y));
sq[++loc]=q[rp++];
}
}
while(rp<=r)
{
if(q[rp].op) ans[q[rp].op]=min(ans[q[rp].op],q[rp].x+q[rp].y-ask(q[rp].y));
sq[++loc]=q[rp++];
}
for(register int i=l;i<lp;i++) if(!q[i].op) Clear(q[i].y);
while(lp<=mid) sq[++loc]=q[lp++];
for(register int i=l;i<=r;i++) q[i]=sq[i];
}
int main()
{
memset(ans,0x3f,sizeof(ans));
n=read(),m=read();
for(int i=1;i<=n;i++) qs[i].x=read()+1,qs[i].y=read()+1;
for(int i=1;i<=m;i++)
{
qs[i+n].op=read(),qs[i+n].x=read()+1,qs[i+n].y=read()+1;
if(--qs[i+n].op) qs[i+n].op=++k;
}
for(int i=1;i<=n+m;i++)
q[i]=qs[i];
CDQ(1,n+m);
for(int i=1;i<=n+m;i++)
q[i]={qs[i].op,M-qs[i].x,qs[i].y};
CDQ(1,n+m);
for(int i=1;i<=n+m;i++)
q[i]={qs[i].op,qs[i].x,M-qs[i].y};
CDQ(1,n+m);
for(int i=1;i<=n+m;i++)
q[i]={qs[i].op,M-qs[i].x,M-qs[i].y};
CDQ(1,n+m);
for(int i=1;i<=k;i++) printf("%d\n",ans[i]);
return 0;
}

2018.11.28

洛谷 P4169 [Violet]天使玩偶/SJY摆棋子 解题报告的更多相关文章

  1. 洛谷P4169 [Violet]天使玩偶/SJY摆棋子(CDQ分治)

    [Violet]天使玩偶/SJY摆棋子 题目传送门 解题思路 用CDQ分治开了氧气跑过. 将输入给的顺序作为第一维的时间,x为第二维,y为第三维.对于距离一个询问(ax,ay),将询问分为四块,左上, ...

  2. 洛谷P4169 [Violet]天使玩偶/SJY摆棋子

    %%%神仙\(SJY\) 题目大意: 一个二维平面,有两种操作: \(1.\)增加一个点\((x,y)\) \(2.\)询问距离\((x,y)\)曼哈顿最近的一个点有多远 \(n,m\le 300 0 ...

  3. bzoj2716/2648 / P4169 [Violet]天使玩偶/SJY摆棋子

    P4169 [Violet]天使玩偶/SJY摆棋子 k-d tree 模板 找了好几天才发现输出优化错了....真是zz...... 当子树非常不平衡时,就用替罪羊树的思想,拍扁重建. luogu有个 ...

  4. P4169 [Violet]天使玩偶/SJY摆棋子

    题目背景 感谢@浮尘ii 提供的一组hack数据 题目描述 Ayu 在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,Ayu 却忘了她把天使玩偶埋在了哪里,所以她决定仅 ...

  5. Luogu P4169 [Violet]天使玩偶/SJY摆棋子

    传送门 二维平面修改+查询,cdq分治可以解决. 求关于某个点曼哈顿距离(x,y坐标)最近的点——dis(A,B) = |Ax-Bx|+|Ay-By| 但是如何去掉绝对值呢? 查看题解发现假设所有的点 ...

  6. luoguP4169 [Violet]天使玩偶/SJY摆棋子 K-Dtree

    P4169 [Violet]天使玩偶/SJY摆棋子 链接 luogu 思路 luogu以前用CDQ一直过不去. bzoj还是卡时过去的. 今天终于用k-dtree给过了. 代码 #include &l ...

  7. [Violet]天使玩偶/SJY摆棋子 [cdq分治]

    P4169 [Violet]天使玩偶/SJY摆棋子 求离 \((x,y)\) 最近点的距离 距离的定义是 \(|x1-x2|+|y1-y2|\) 直接cdq 4次 考虑左上右上左下右下就可以了-略微卡 ...

  8. 【LG4169】[Violet]天使玩偶/SJY摆棋子

    [LG4169][Violet]天使玩偶/SJY摆棋子 题面 洛谷 题解 至于\(cdq\)分治的解法,以前写过 \(kdTree\)的解法好像还\(sb\)一些 就是记一下子树的横.纵坐标最值然后求 ...

  9. LG4169 [Violet]天使玩偶/SJY摆棋子

    题意 Ayu 在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,Ayu 却忘了她把天使玩偶埋在了哪里,所以她决定仅凭一点模糊的记忆来寻找它. 我们把 Ayu 生活的小镇 ...

随机推荐

  1. python环境通过selenium实现自动化web登陆及终端邀请

    自动化主要的就是识别对象,可以在网上搜到各种各样的方法,自行百度.下面仅附上一个简单的例子. 环境搭建参考如下链接: https://www.cnblogs.com/hepeilinnow/p/101 ...

  2. 小白初识 - 归并排序(MergeSort)

    归并排序是一种典型的用分治的思想解决问题的排序方式. 它的原理就是:将一个数组从中间分成两半,对分开的两半再分成两半,直到最终分到最小的单位(即单个元素)的时候, 将已经分开的数据两两合并,并且在合并 ...

  3. EasyUI 效果还不错的数据处理等待效果

    $("#form").form("submit",{ url:url, onSubmit: function(){ parent.$.messager.prog ...

  4. 技本功丨请带上纸笔刷着看:解读MySQL执行计划的type列和extra列

    本萌最近被一则新闻深受鼓舞,西工大硬核“女学神”白雨桐,获6所世界顶级大学博士录取 货真价值的才貌双全,别人家的孩子 高考失利与心仪的专业失之交臂,选择了软件工程这门自己完全不懂的专业.即便全部归零, ...

  5. 广东ACM省赛 E题

    题意: 输入一个P 使得存在一个一个N大于等于P, 并且存在m 等于 m/n * (m-1)/(n-1)=1/2. 思路 此题可以利用佩尔方程求解, 也可以打表解决.本次我解决利用的是佩尔方程(其实也 ...

  6. Centos7下安装Oracle11g r2

    我的centos7是在virtualbox下安装的,安装Oracle安装了好久好久,最开始的时候在网上找的两个文章,按照步骤装,有一篇写着装的时候有灰色的竖线,直接按space键或者鼠标右键close ...

  7. Scrum立会报告+燃尽图(十月十九日总第十次):

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...

  8. HDU 5172 GTY's gay friends 线段树+前缀和+全排列

    题目链接: hdu: http://acm.hdu.edu.cn/showproblem.php?pid=5172 bc(中文):http://bestcoder.hdu.edu.cn/contest ...

  9. IP ,路由

    ifconfig 命令       ip信息   enp0s3: flags=4163<UP(已经启用),BROADCAST(支持广播),RUNNING,MULTICAST(支持多播)> ...

  10. vbs习题

    练习题: 1.输入3个数,输出其中最大的那个值. Option Explicit Dim intA,intB,intC intA=CInt(InputBox("请输入a:")) i ...