【BZOJ2216】Lightning Conductor(动态规划)

题面

BZOJ,然而是权限题

洛谷

题解

\(\sqrt {|i-j|}\)似乎没什么意义,只需要从前往后做一次再从后往前做一次就好了。

只考虑从前往后,把给定的式子移项,可以得到

\(p\ge a[j]-a[i]+\sqrt{i-j}\)

而\(a[i]\)是当前的枚举的位置\(i\)的值,这个是不会变化的。

所以要求的就是\(max(a[j]-\sqrt{i-j})\)

画出\(\sqrt x\)的函数图像,是一个增长率越来越慢的函数。

那么,如果当前转移\(i\)的时候,\(j\)优于\(k\)(\(k\lt j\)),

那么接下来转移\(i+1\)的时候同样\(j\)更优。

既然具有了决策单调性,直接二分就好了。

维护一个单调队列,存下当前位置\(j\)转移到哪些区间是更优的,

不难发现这个区间一定是\([l,n]\),当然也可能是个空区间。

插入的时候也二分修改一下就好了。有点类似于诗人小G那题。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define RG register
#define MAX 500500
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Node{int i,l,r;}Q[MAX];
int h,t;
int n,a[MAX];
double f[MAX];
double Trans(int j,int i){return a[j]+sqrt(i-j);}
void Work()
{
Q[h=t=1]=(Node){1,2,n};
for(int i=2;i<=n;++i)
{
while(h<=t&&Q[h].r<i)++h;Q[h].l=i;
f[i]=max(f[i],Trans(Q[h].i,i)-a[i]);
while(h<=t&&Trans(Q[t].i,Q[t].l)<Trans(i,Q[t].l))--t;
if(h>t){Q[++t]=(Node){i,i,n};continue;}
int l=Q[t].l,r=Q[t].r,ret=Q[t].r+1;
while(l<=r)
{
int mid=(l+r)>>1;
if(Trans(Q[t].i,mid)<Trans(i,mid))ret=mid,r=mid-1;
else l=mid+1;
}
if(ret!=Q[t].l)Q[t].r=ret-1;else --t;
if(ret<=n)Q[++t]=(Node){i,ret,n};
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
Work();reverse(&a[1],&a[n+1]);reverse(&f[1],&f[n+1]);
Work();reverse(&f[1],&f[n+1]);
for(int i=1;i<=n;++i)printf("%d\n",(int)(ceil(f[i])));
return 0;
}

【BZOJ2216】Lightning Conductor(动态规划)的更多相关文章

  1. [BZOJ2216]Lightning Conductor

    原来决策单调性指的是这个东西... 一些DP可以写成$f_i=\max\limits_{j\lt i}g(i,j)$,设$p_i(p_i<j)$表示使得$g(i,j)$最大的$j$,如果$p_1 ...

  2. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  3. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  4. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  5. 【bzoj2216】[Poi2011]Lightning Conductor 1D1D动态规划优化

    Description 已知一个长度为n的序列a1,a2,…,an.对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs ...

  6. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

  7. BZOJ2216 : [Poi2011]Lightning Conductor

    $f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...

  8. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  9. bzoj 2216 Lightning Conductor - 二分法 - 动态规划

    题目传送门 需要root权限的传送门 题目大意 给定一个长度为$n$的数组,要求对每个$1 \leqslant i \leqslant n$找到最小整数的$p$,对于任意$j$满足使得$a_{i} + ...

随机推荐

  1. 使用Nexus搭建Maven私服问题总结

    #业务场景 最近项目要交付给客户了,之前项目开发和测试一直都是使用公司内部的一套环境,项目交付后客户购置了大量服务器,也要将整套测试环境迁移至客户的服务器上,后续的需求变更以及新需求的开发都会在客户服 ...

  2. selenium自动化之处理浏览器警告弹窗

    有的网站会弹出类似如下图的警告弹窗,你会发现这种弹窗在html源码中怎么也定位不到,接下来将介绍这种弹窗的处理方式. 其实这种弹窗是不属于html的元素的,他是属于浏览器自带的弹窗,所以用定位元素的方 ...

  3. php文章tag标签的增删

    <?php session_start();   if($_POST){           $_SESSION['old']=array('one','two','three','four', ...

  4. CsvHelper文档-4映射

    CsvHelper文档-4映射 类映射 有时候你的类成员和csv的header不一定对应,有时候你的csv文件根本就没有header行,你需要特别制定一个成员的index,你不能依靠.net中默认的顺 ...

  5. Java线上应用故障排查之一:高CPU占用 (转)

    一个应用占用CPU很高,除了确实是计算密集型应用之外,通常原因都是出现了死循环. (友情提示:本博文章欢迎转载,但请注明出处:hankchen,http://www.blogjava.net/hank ...

  6. ES6的新特性(20)—— Module 的加载实现

    Module 的加载实现 上一章介绍了模块的语法,本章介绍如何在浏览器和 Node 之中加载 ES6 模块,以及实际开发中经常遇到的一些问题(比如循环加载). 浏览器加载 传统方法 HTML 网页中, ...

  7. Live Love(思维)

    DreamGrid is playing the music game Live Love. He has just finished a song consisting of n notes and ...

  8. Flip the Bits(思维)

    You are given a positive integer n. Your task is to build a number m by flipping the minimum number ...

  9. myeclipse生成类的帮助文档

    http://blog.csdn.net/tabactivity/article/details/11807233

  10. 【二分图匹配】Plug It In!

    http://codeforces.com/gym/101873 F 先对原图跑一遍匈牙利得到原始最大匹配,再遍历每个出度>1的点,考虑若新加入点,能否找到增广路,若可行则答案对应增加 代码: ...