数据结构与算法分析

优先队列

模型

  • Insert(插入) == Enqueue(入队)
  • DeleteMin(删除最小者) == Dequeue(出队)

基本实现

  • 简单链表:在表头插入,并遍历该链表以删除最小元

    时间代价昂贵

  • 二叉查找树

    二叉查找树支持许多不需要的操作,实现麻烦,不值得

最合适:二叉堆


二叉堆

堆的两种性质

结构性

  • 完全二叉树:除底层外完全填满,底层也是从左至右填
  • 完全二叉树的高为
  log N
  • 分布很有规律可以用数组实现

左儿子 = 2i

右儿子 = 2i + 1

堆序性

  • 树的最小元应该在根节点上
  • 每个节点X,X的父亲的关键字应该小于或等于X的关键字

实现

优先队列的声明

struct HeapStrcut ;
typedef struct HeapStruct *PriorityQueue ; PriorityQueue Intialize(int MaxElement) ;
void Destory(PriorityQueue H) ;
void MakeEmpty(PriorityQueue H) ;
void Insert(ElementType X, PriorityQueue H) ;
ElementType DeleteMin(PriotityQueue H) ;
ElementType Find(PritityQueue H) ;
int IsEmpty(PriorityQueue H) ;
int IsFull(PriorityQueue H) ; srtuct HeapStruct
{
int Capacity ;
int Size l
ElementType *Elements ;
}

初始化

PriorityQueue Intialize(int MaxElement)
{
PriorityQueue H ;
H->Elements = malloc((MaxElement + 1) * sizeof(ElementType) ;
if(H->Elements == NULL)
FatalError("内存不足");
H->Capacity = MaxElement ;
H->Size = 0;
H->Elements[0] = MinData ;//在根节点赋一个绝对的小的值 return H ;
}

Insert操作

上滤

void Insert(ElementType X, PriorityQueue H)
{
int i ;
if(IsFull(H))
Error("堆满") ; for(i = ++H->Size;H->Elements[i/2] > X;i/2)
H->Elenemts[i] = H->Elements[i/2] ;
H->Elements[i] = X ; return H ;
}

Delete函数

下滤

先拿到最后一个元素,和当前被删除后剩下的空穴的最小儿子比较,如果儿子小则换至空穴,继续下滤,反之将最后一个元素放置空穴结束下滤

ElementType Insert(PriorityQueue H)
{ int i,Child ;
ElementType MinElement,LastElement ; if(IsEmpty(H))
{
Error("堆为空") ;
return H->Elements[0] ;
}
MinElement = H->Elements[1];
LastElement = H->Elements[H->Size--] ;
for(i = 1; i * 2 <= H->Size;i = Child)
{
Child = i * 2;
if(Child != H->Size && H->Element[Child] > H->Elements[Child + 1])
Child ++ ; if(LastElement > H->Elements[Child)
H->Elements[i] = H->Elements[Child] ;
else break ;
}
H->Elements[i] = LastElement ; return MinElenemt;
}

左式堆

性质

高效支持Merge操作

和二叉树唯一区别在于:左式堆不是理想平衡的

对于堆中的每一个节点X,左儿子的零路径长NPL大于右儿子的零路径长NPL

- 零路径长(NPL):从该节点到一个没有两个儿子的节点的最短路径长

左式堆的类型声明

PriorityQueue Intailize(void) ;
ElementType FindMin(PriorityQueue H) ;
int IsEmpty(PriorityQueue H) ;
PriorityQueue Merge(PriorityQueue H1,PriorityQueue H2) ; #define Insert(X,H) (H = Insert1(X,H)) ; //为了兼容二叉堆 PriorityQueue Insert1(ElementType, PriorityQueue H) ;
PriorityQueue DeleteMin(PriorityQueue H) ; sturct TreeNode
{
ElementType Element ;
PriorityQueue Left ;
PriorityQueue Right ;
int Npl ;
}

Merge操作

驱动程序

PriorityQueue Merge(PriorityQueue H1,PriorityQueue H2)
{
if(H1 == NULL)
return H2 ;
eles if(H2 == NULL)
return H1 ;
else if(H1->Element > H2->Element)
return Merge1(H1,H2) ;
else
return Merge1(H1S,H2) ;
}

实际操作

PriorityQueue Merge1(PriortyQueue H1,PriorityQueue H2)
{
if(H1->Left == NULL)
H1->Left = H2 ;
else
{
H2->Right = Merge1(H1->Right,H2) ;
if(H1->Left->Npl < H1->Right->Npl)
SwapChildren(H1) ;
H1->Npl = H1->Right->Npl + 1;
} return H1 ;
}

Insert操作

PriorityQueue Insert(ElementType X,PriorityQueue H)
{
PriorityQueue SinglNode ;
SinglNode = malloc(sizeof(TreeNode)) ;
if(SinglNode == NULL)
FatalError("内存不足") ;
else
{
SingleNode->Element = X ;
SingleNode->Npl = 0 ;
SingleNode->Left = SingleNode->Right = NULL ;
Merge(SingleNode,H) ;
}
return H ;
}

Delete操作

PriorityQueue DeleteMin1(PriorityQueue H)
{
PriorityQueue LeftHeap,RightHeap ; if(IsEmpty(H))
FatalError("队列为空") ;
else
{
LeftHeap = H1->Left ;
RightHeap = H1->Right ;
free(H) ;
Merge(LeftHeap,RightHeap) ;
}
}

二项队列

结构

  • 二项队列是堆序树的集合,称为森林
  • 堆序中每颗树都是有约束的树,称为二项树
  • 高度为k的二项树有一颗二项树Bk-1附接到另一颗二项树Bk-1的根上

二项队列的实现

二项队列将是二项树的数组

二项树的每个节点包含数据,第一个儿子和兄弟

二项队列的类型声明 `

typedef struct BinNode *Position ;
typedef struct Collection *BinQueue ; struct BinNode
{
ElementType Element ;
Position LeftChild ;
Position NextBiling ;
} typedef Position BinTree ; struct Collection
{
int CurrentSize ;
BinTree TheTrees[MaxTree] ;
}

Merge操作

合并两个相同大小的两颗二项树

BinTree ConbineTrees(BinTree T1,BinTree T2)
{
if(T1->Element > T2->Element)
return CombineTree(T2,T1) ;
T2->NextBling = T1->LeftChild ;
T1->LeftChild = T2 ; return T1 ;
}

合并两个优先队列

BinQueue Merge(BinQueue H1,BinQueue H2)
{
BinTree T1,T2,Carry = NULL ;
int i ,j ;
if(H1->CurrentSize + H2->CurrentSize > Capacity)
Error("合并后过大") ; H1->CurrentSize += H2->CurrentSize ;
for(i = 0;j = 1;j <= H1->CurrentSize; i++,j *= 2)
{
T1 = H1->TheTree[i] ;
T2 = H2->TheTree[i] ; switch(!!T1 + 2 * !!T2 + 4 * !!Carry)
{
case 0 : //空树
case 1:
break ; //只有H1
case 2:
H1->TheTree[i] = T2
H2->TheTree[i] = NULL ;
break ;
case 4:
H1->TheTree[i] = Carry ;
Carry = NULL ;
case 3: //h1 and h2
Carry = CombineTrees(T1,T2) ;
H1->TheTree[i] = H1->TheTree[i] = NULL ;
break ;
case 5: //h1 and carry
Carry = ConbineTrees(T1,Carry) ;
H1->TheTrees[i] = NULL ;
case 6:
Carry = ConbineTrees(T2,Carry) ;
H2->TheTrees[i] = NULL ;
case 7: //都有
H1->TheTree[i] = Carry ;
Carry = CombineTrees(T1,T2) ;
H2->TheTrees[i] = NULL ;
break ; } }
return H1 ;
}

总结

优先队列可以用二叉堆实现,简单快速

但考虑到Merge操作,又延申了左式堆和二次队列

优先队列(堆) -数据结构(C语言实现)的更多相关文章

  1. 数据结构( Pyhon 语言描述 ) — —第10章:树

    树的概览 树是层级式的集合 树中最顶端的节点叫做根 个或多个后继(子节点). 没有子节点的节点叫做叶子节点 拥有子节点的节点叫做内部节点 ,其子节点位于层级1,依次类推.一个空树的层级为 -1 树的术 ...

  2. Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET

    Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET Python -- 堆数据结构 heapq 分类: Python 2012-09 ...

  3. 数据结构(C语言)—排序

    数据结构(C语言)—排序 排序 排序是按关键字的非递增或递减顺序对一组记录中心进行排序的操作.(将一组杂乱无章的数据按一定规律顺次排列起来.) 未定列表与不稳定列表 假设 Ki = Kj ( 1 ≤ ...

  4. c++学习书籍推荐《清华大学计算机系列教材:数据结构(C++语言版)(第3版)》下载

    百度云及其他网盘下载地址:点我 编辑推荐 <清华大学计算机系列教材:数据结构(C++语言版)(第3版)>习题解析涵盖验证型.拓展型.反思型.实践型和研究型习题,总计290余道大题.525道 ...

  5. 数据结构C语言版 有向图的十字链表存储表示和实现

    /*1wangxiaobo@163.com 数据结构C语言版 有向图的十字链表存储表示和实现 P165 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h> ...

  6. 数据结构C语言版 表插入排序 静态表

    数据结构C语言版 表插入排序.txt两个人吵架,先说对不起的人,并不是认输了,并不是原谅了.他只是比对方更珍惜这份感情./*  数据结构C语言版 表插入排序  算法10.3 P267-P270  编译 ...

  7. 数据结构C语言版 弗洛伊德算法实现

    /* 数据结构C语言版 弗洛伊德算法  P191 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h>#include <limits.h> # ...

  8. 《数据结构-C语言版》(严蔚敏,吴伟民版)课本源码+习题集解析使用说明

    <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明 先附上文档归类目录: 课本源码合辑  链接☛☛☛ <数据结构>课本源码合辑 习题集全解析  链接☛☛☛  ...

  9. 堆的C语言实现

    在C++中,可以通过std::priority_queue来使用堆. 堆的C语言实现: heap.c /** @file heap.c * @brief 堆,默认为小根堆,即堆顶为最小. */ #in ...

  10. Python实现堆数据结构

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/3/18 19:47 # @Author : baoshan # @Site ...

随机推荐

  1. 学习一份百度的JavaScript编码规范

    JavaScript编码规范 1 前言 2 代码风格 2.1 文件 2.2 结构 2.2.1 缩进 2.2.2 空格 2.2.3 换行 2.2.4 语句 2.3 命名 2.4 注释 2.4.1 单行注 ...

  2. 阅读 CloudDPI:Cloud+DPI+Reversible Sketch

    CloudDPI: Cloud-Based Privacy-Preserving Deep Packet Inspection via Reversible Sketch 与sketch的结合点:将修 ...

  3. Centos 批量分发脚本

    ## Centos / ## #!/bin/sh file="$1" remotedir="$2" filename=$(|awk -F '/' '{print ...

  4. CentOS 7 Minimal 安装JDK 1.8

    真好最近比较闲,打算在linux 的CentOS 7 Minimal版本试着搭建hadoop环境学习学习,当然第一步就是在CentOS 7 Minimal 安装JDK 1.8环境.其实老早就打算了解一 ...

  5. 【visual studio code 的python开发环境搭建 】

    打开vs code,按按F1或者Ctrl+Shift+P打开命令行,然后输入ext install 输入Python,选第一个,这个用的最多,支持自动补全代码等功能,点击安装按钮,即可安装 下面试着编 ...

  6. Angular 弹窗 控件

    这个控件个人很喜欢,比起primgNG等弹窗组建,这款弹窗可以很轻松的定义自己的样式和布局. 可控参数有:宽度,高度,是否带有关闭图标,基本满足基础弹窗需求. 并且 Title/Content/Foo ...

  7. 基于STM32的简易磁卡充值系统

    使用的是MFRC522射频模块,把磁卡放入感应区后,可以执行三种操作: 初始化磁卡金额 读取卡内金额 向卡内写入金额(充值) 本来想着回学校了能把洗浴卡的金额给改掉,实现帝皇般的尊贵洗浴享受(不花钱… ...

  8. kubernetes命令式容器应用编排/部署应用/探查应用详情/部署service对象/扩缩容/修改删除对象

    部署Pod应用 创建delpoyment控制器对象 [root@master ~]# kubectl run myapp --image=ikubernetes/myapp:v1 --port=80 ...

  9. Python学习:18.Python异常处理

    一.为什么使用异常处理 当程序运行的时候出现了异常,导致程序终止运行,为了解决这种情况,我们需要预先对可能出现的异常进行处理,一旦出现这种异常,就使用另一种方式解决问题,还有就是错误信息是使用者没有必 ...

  10. BurpSuite—-Scanner模块(漏洞扫描)

    一.简介 Burp Scanner 是一个进行自动发现 web 应用程序的安全漏洞的工具.它是为渗透测试人员设计的,并且它和你现有的手动执行进行的 web 应用程序半自动渗透测试的技术方法很相似. 使 ...