题目链接:

http://codeforces.com/problemset/problem/57/C

题意:

给你一个数n,表示有n个数的序列,每个数范围为[1,n],叫你求所有非降和非升序列的个数。

题解:

由于对称性,我们只要求非降序的个数就可以了(n个数全部相等的情况既属于非升也属于非降)

我们在满足条件的n个数之前加一个虚节点1,在第n个数之后加一个虚节点n,那么考虑这n+2个数组成的非降序列:

假设序列里的第i个数为a[i],我们设xi=a[i+1]-a[i]+1,1<=i<=n+1,则满足每个数>=1,且sum(x[1],x[2]...x[n+1])=2*n;

那么相当于求将2*n分成n个部分,且每个部分的值大于等于1,则易得非降序列总数为:C(n,2*n-1)(2*n-1 选 n)

所以最后的答案是2*C(n,2*n-1)-n;

代码:

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; const int mod = ;
typedef long long LL;
int n;
//扩展欧几里得
void gcd(int a, int b, int &d, int &x, int &y) {
if (!b) { d = a; x = ; y = ; }
else { gcd(b, a%b, d, y, x); y -= x*(a / b); }
}
//求逆元
int inv(int a) {
int d, x, y;
gcd(a, mod, d, x, y);
return x;
}
//求阶乘
int solve(int _n,int x) {
LL ret = ;
while (_n--) {
ret *= x;
ret %= mod;
x--;
}
return ret;
} int main() {
while (scanf("%d", &n) == && n) {
int ans = (LL)solve(n, * n - )*inv(solve(n,n))%mod;
ans = ans * - n;
ans = (ans%mod + mod) % mod;
printf("%d\n", ans);
}
return ;
}

CodeForces 57C Array 组合计数+逆元的更多相关文章

  1. Codeforces 57C Array dp暴力找到规律

    主题链接:点击打开链接 的非增量程序首先,计算, 如果不增加的节目数量x, 非减少一些方案是x 答案就是 2*x - n 仅仅需求得x就可以. 能够先写个n3的dp,然后发现规律是 C(n-1, 2* ...

  2. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  3. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  4. 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)

    [BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...

  5. bzoj 1004 Cards 组合计数

    这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...

  6. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  7. WC集训DAY2笔记 组合计数 part.1

    目录 WC集训DAY2笔记 组合计数 part.1 基础知识 组合恒等式 错排数 卡特兰数 斯特林数 伯努利数 贝尔数 调和级数 后记 补完了几天前写的东西 WC集训DAY2笔记 组合计数 part. ...

  8. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  9. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

随机推荐

  1. PHP保存数组到数据库

    数组是 PHP 开发中使用最多的数据类型之一,对于结构化的数据尤为重要. 很多时候我们需要把数组保存到数据库中,实现对结构化数据的直接存储和读取. 其中一个案例就是,对于 Form 提交的多选 che ...

  2. T+固定资产二维码管理(生成,打印)

    先 来几句生硬的开场白. 不知不觉中,二维码慢慢的取代了传统的条码.原因之一就是二维码更加的时尚,原因之二便是二维码可以存储更多的信息.......... 企业的固定资产,直接贴个二维码,然后用手机扫 ...

  3. 【 C 】高级字符串查找之 strspn 和 strcspn 的思考

    我的CSDN博客 strspn 这个库函数是真的很难理解,看了很多中文描述,反正都是不知所云,给出一系列的例子,结果也是让我瞠目结舌,荒唐.荒谬.荒诞! 特此记录理解过程,最后竟然是百度百科让我明白了 ...

  4. DotNetty学习笔记

    DotNetty项目本身的示例很容易运行起来,但是具体到真实的应用场景,还是需要进一步理解DotNetty的通道处理细节,这样才能够在实际项目应用中处理具体的问题. 简单的场景下会有以下几个问题,第一 ...

  5. [转载]DotNetty 学习

    [转载]http://www.cnblogs.com/littlegod/p/7699482.html DotNetty的学习是带着如下这些问题展开: 1. Socket基础框架方案: 通信模式:异步 ...

  6. 20155319 2017-2018-1《信息安全系统设计》第四周课堂测试、Makefile、myod

    20155319 2017-2018-1<信息安全系统设计>第四周课堂测试.Makefile.myod 测试2-gcc测试 1.用gcc 进行预处理,编译,汇编,链接vi输入的代码 2.生 ...

  7. python3出现转码问题的总结

    对于此(类)问题: (1)出现UnicodeEncodeError –> 说明是Unicode编码时候的问题: (2) ‘gbk’ codec can’t encode character –& ...

  8. 【洛谷P4556】 雨天的尾巴

    题面 题解 线段树合并 我们看到这道题目首先可以想到树上差分,然后\(dfs\)合并 发现题目让我们求的东西很好用线段树维护 于是可以想到线段树合并 全世界只有我写指针版动态开点线段树(大雾 如果你要 ...

  9. Drupal7 实现like(点赞)功能

    尝试了好几个模块做下总结: 1. Like Dislike Buttons 好处:代码实现简单,一看就懂,开启后无需任何配置,自动在node底部显示like和unlike的小手.而且模版改起来也容易. ...

  10. LAUNCHXL-28379D入门学习-第一篇

    1. 首先安装controlSUITE或者C2000ware软件,TI官网下载,安装后包括C2000的函数库和例程之类的,还可以和CCS搭配使用.controlSUITE安装完之后大约4个G,所以我安 ...