对于已经得到的样本集,核密度估计是一种可以求得样本的分布的概率密度函数的方法:

通过选取核函数和合适的带宽,可以得到样本的distribution probability,在这里核函数选取标准正态分布函数,bandwidth通过AMISE规则选取

具体原理及定义:传送门 https://en.wikipedia.org/wiki/Density_estimation

MATLAB 代码实现如下:

 % Kernel Density Estimation
% 只能处理正半轴密度
function [t, y_true, tt, y_KDE] = KernelDensityEstimation(x)
% clear % x = px_last;
% x = px_last_tu;
%%
%参数初始化
Max = round(max(x)); %数据中最大值
Min = round(min(x)); %数据中最小值
Ntotal = length(x); %数据个数
tt = : 0.1 : Max; %精确x轴
t = : Max; %粗略x轴 y_KDE = zeros( * Max+, ); %核密度估计值
sum1 = ; %求和的中间变量
%%
%计算带宽h
R = /(*sqrt(pi));
m2 = ;
h = ;
% h = (R)^(/) / (m2^(/) * R^(/) * Ntotal^(/)); %%
%计算核密度估计
for i = : 0.1 : Max
for j = : Ntotal
sum1 = sum1 + normpdf(i-x(j));
end
y_KDE(round(i*+)) = sum1 / (h * Ntotal);
sum1 = ;
end sum2 = sum(y_KDE)*0.1; %归一化KDE密度
for i = : 0.1 : Max
y_KDE(round(i*+)) = y_KDE(round(i*+))/sum2;
end %%
%计算真实密度的分布
y_true = zeros(Max+,);
for i = : Max
for j = : Ntotal
if (x(j) < i+)&&(x(j) >= i)
y_true(i+) = y_true(i+) + ;
end
end
y_true(i+) = y_true(i+) / Ntotal;
end %%
%绘图 % figure() %真实密度的分布图象
% bar(t, y_true);
% axis([Min Max+ max(y_true)*1.1]);
%
% figure() %核密度估计的密度分布图象
% plot(tt, y_KDE);
% axis([Min Max max(y_true)*1.1]);

给定测试数据:

data = [1,2,3,4,5,2,1,2,4,2,1,4,7,4,1,2,4,9,8,7,10,1,2,3,1,0,0,3,6,7,8,9,4]

样本的条形统计图和KDE密度分布图分别如下,可以看到KDE可以较好的还原样本的分布情况:

真实概率分布图

KDE密度分布图

核密度估计 Kernel Density Estimation (KDE) MATLAB的更多相关文章

  1. 非参数估计:核密度估计KDE

    http://blog.csdn.net/pipisorry/article/details/53635895 核密度估计Kernel Density Estimation(KDE)概述 密度估计的问 ...

  2. kdeplot(核密度估计图) & distplot

    Seaborn是基于matplotlib的Python可视化库. 它提供了一个高级界面来绘制有吸引力的统计图形.Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图 ...

  3. 【转】用深度学习做crowd density estimation

    本博文主要是CVPR2016的<Single-Image Crowd Counting via Multi-Column Convolutional Neural Network>这篇文章 ...

  4. R语言与非参数统计(核密度估计)

    R语言与非参数统计(核密度估计) 核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parz ...

  5. More 3D Graphics (rgl) for Classification with Local Logistic Regression and Kernel Density Estimates (from The Elements of Statistical Learning)(转)

    This post builds on a previous post, but can be read and understood independently. As part of my cou ...

  6. 泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation

    张宁 Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation 基于无人机的向下平面 ...

  7. <轻量算法>根据核密度估计检测波峰算法 ---基于有限状态自动机和递归实现

    原创博客,转载请联系博主! 希望我思考问题的思路,也可以给大家一些启发或者反思! 问题背景: 现在我们的手上有一组没有明确规律,但是分布有明显聚簇现象的样本点,如下图所示: 图中数据集是显然是个3维的 ...

  8. 非参数估计——核密度估计(Parzen窗)

    核密度估计,或Parzen窗,是非参数估计概率密度的一种.比如机器学习中还有K近邻法也是非参估计的一种,不过K近邻通常是用来判别样本类别的,就是把样本空间每个点划分为与其最接近的K个训练抽样中,占比最 ...

  9. Windows内核开发-6-内核机制 Kernel Mechanisms

    Windows内核开发-6-内核机制 Kernel Mechanisms 一部分Windows的内核机制对于驱动开发很有帮助,还有一部分对于内核理解和调试也很有帮助. Interrupt Reques ...

随机推荐

  1. 计算机应用基础教程作业flash动画 车辆工程 冯大昕

  2. Nowcoder Girl 初赛 T5

    Nowcoder Girl 初赛第五题 来源 Nowcoder Girl 初赛第五题 题面 \(n(1<=n<=10000)\)件武器,每件武器对于属性有加成,一共五种属性.若使用其中的\ ...

  3. js字符串和数组

    sustr  substring  slice的联系与区别 str.substr(2,5) //从索引2开始截取5个字符,原有字符串str不变 str.substring(2,5) //从索引2开始截 ...

  4. tcp 面向连接

    TCP通信时通过三次握手建立连接,这个连接不是虚拟链路,每个IP报文是要寻址,通过路由转发的 那建立的这个连接能够起什么作用啊,感觉建立这个连接和不建立这个连接的效果是一样的啊!因为除去可靠性等机制, ...

  5. 关于numpy mean函数的axis参数

    import numpy as np X = np.array([[1, 2], [4, 5], [7, 8]]) print np.mean(X, axis=0, keepdims=True) pr ...

  6. CUDA 纹理的使用

    纹理绑定有两种,一个是绑定到线性内存就是用cudaMalloc();cudaMemcpy();开辟的内存空间,另一种是绑定到cudaMallocArray, cudaMemcpyToArray开辟到的 ...

  7. unittest 测试

    unittest 测试 单元测试是用来对一个模块.一个函数或者一个类来进行正确性检验的测试工作. 比如对函数abs(),我们可以编写出以下几个测试用例: 输入正数,比如1.1.2.0.99,期待返回值 ...

  8. idea 注册码(2019)

    MTW881U3Z5-eyJsaWNlbnNlSWQiOiJNVFc4ODFVM1o1IiwibGljZW5zZWVOYW1lIjoiTnNzIEltIiwiYXNzaWduZWVOYW1lIjoiI ...

  9. [LuoguP1352][FJSC]没有上司的舞会

    [LuoguP1352][FJSC]没有上司的舞会(Link) 现在你有一棵树,每一个点有一个点权\(R[i]\),如果选择了\(i\)点,那么\(i\)子树上的所有的点都不能选,现在要求选择若干个点 ...

  10. java中的序列化问题

    序列化就是一种用来处理对象流的机制,所谓对象流也就是将对象的内容进行流化,将数据分解成字节流,以便存储在文件中或在网络上传输.可以对流化后的对象进行读写操作,也可将流化后的对象传输于网络之间.序列化是 ...