input friends relations{{1,2}, {2,3}, {3,4}}
把人分成两拨,每拨人互相不认识,
所以应该是group1{1,3}, group2{2,4}

这道题应该是how to bipartite a graph

Taken from GeeksforGeeks

Following is a simple algorithm to find out whether a given graph is Birpartite or not using Breadth First Search (BFS) :-

  1. Assign RED color to the source vertex (putting into set U).
  2. Color all the neighbors with BLUE color (putting into set V).
  3. Color all neighbor’s neighbor with RED color (putting into set U).
  4. This way, assign color to all vertices such that it satisfies all the constraints of m way coloring problem where m = 2.
  5. While assigning colors, if we find a neighbor which is colored with same color as current vertex, then the graph cannot be colored with 2 vertices (or graph is not Bipartite).

Also, NOTE :-

-> It is possible to color a cycle graph with even cycle using two colors.

-> It is not possible to color a cycle graph with odd cycle using two colors.

EDIT :-

If a graph is not connected, it may have more than one bipartition. You need to check all those components separately with the algorithm as mentioned above.

So, for various disconnected sub-graph of the same graph, you need to perform this bipartition check on all of them separately using the same algorithm discussed above. All of those various disconnected sub-graph of the same graph will account for its own set of bipartition.

And, the graph will be termed bipartite, IF AND ONLY IF, each of its connected components are proved to be bipartite .

 package fbOnsite;

 import java.util.*;

 public class Bipartite {
HashSet<Integer> list1 = new HashSet<Integer>();
HashSet<Integer> list2 = new HashSet<Integer>(); public void bfs(int[][] relations) {
HashMap<Integer, HashSet<Integer>> graph = new HashMap<Integer, HashSet<Integer>>();
for (int[] each : relations) {
if (!graph.containsKey(each[0]))
graph.put(each[0], new HashSet<Integer>());
if (!graph.containsKey(each[1]))
graph.put(each[1], new HashSet<Integer>());
graph.get(each[0]).add(each[1]);
graph.get(each[1]).add(each[0]);
} Queue<Integer> queue = new LinkedList<Integer>();
queue.offer(relations[0][0]);
list1.add(relations[0][0]);
HashSet<Integer> visited = new HashSet<Integer>();
visited.add(relations[0][0]);
int count = 1;
while (!queue.isEmpty()) {
int size = queue.size();
for (int i=0; i<size; i++) {
int person = queue.poll();
HashSet<Integer> friends = graph.get(person);
for (int each : friends) {
if (list1.contains(each)&&list1.contains(person) || list2.contains(each)&&list2.contains(person)) {
list1.clear();
list2.clear();
return;
} if (!visited.contains(each)) {
if (count%2 == 1) list2.add(each);
else list1.add(each);
queue.offer(each);
visited.add(each);
}
}
}
count++;
}
} /**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Bipartite sol = new Bipartite();
int[][] relations1 = new int[][]{{1,2},{2,3},{3,4}};
int[][] relations2 = new int[][]{{1,2},{1,4},{1,6},{1,8},{2,3},{3,4},{3,6},{2,5},{4,5},{5,6},{5,8}};
int[][] relations3 = new int[][]{{1,2},{2,3},{3,1}};
sol.bfs(relations2);
System.out.println(sol.list1);
System.out.println(sol.list2);
} }

FB面经Prepare: Bipartite a graph的更多相关文章

  1. FB面经 Prepare: All Palindromic Substrings

    Given a string, calculate how many substring is palindrome. Ignore non-char characters. Ignore case; ...

  2. FB面经 Prepare: Task Schedule

    tasks has cooldown time, give an input task id array, output finish time input: AABCA A--ABCA output ...

  3. FB面经 Prepare: Make Parentheses valid

    给一组括号,remove最少的括号使得它valid 从左从右各scan一次 package fb; public class removeParen { public static String fi ...

  4. FB面经Prepare: Friends Recommendation

    有个getFriend() API, 让你推荐你的朋友的朋友做你的朋友,当然这个新朋友不能是你原来的老朋友 package fb; import java.util.*; public class R ...

  5. FB面经Prepare: Dot Product

    Conduct Dot Product of two large Vectors 1. two pointers 2. hashmap 3. 如果没有额外空间,如果一个很大,一个很小,适合scan小的 ...

  6. FB面经prepare: Count the number of Vector

    给一个超级大的排好序的vector [abbcccdddeeee]比如,要求返回[{,a}, {,b}, {,c}, {,d}, {,e}......]复杂度要优于O(N) 分析: 如果是binary ...

  7. FB面经 Prepare: Even Tree

    You are given a tree (a simple connected graph with no cycles). The tree has nodes numbered from to ...

  8. FB面经 Prepare: Largest Island

    Find largest island in a board package fb; public class LargestIsland { public int findLargestIsland ...

  9. FB面经prepare: task schedule II

    followup是tasks是无序的. 一开始是有序的,比如说1, 1, 2, 1,一定要先执行第一个task1,然后等task1恢复,再执行第2个task1,再执行task2..... follow ...

随机推荐

  1. ELK对Tomcat日志双管齐下-告警触发/Kibana日志展示

    今天我们来聊一聊Tomcat,相信大家并不陌生,tomcat是一个免费开源的web应用服务器,属于轻量级的应用程序,在小型生产环境和并发不是很高的场景下被普遍使用,同时也是开发测试JSP程序的首选.也 ...

  2. ajax 函数回调

    var initTaxPriod = function (taxNo) { intitSearch(); $("#taxPeriod").html(""); t ...

  3. web中cookie的使用

    一:cookie在浏览器中什么地方查找写入成功 二:如何用js写 function addCookie(name,value,expireHours){ var cookieString=name+& ...

  4. net core 获取配置文件

    IConfiguration服务是net core 默认依懒注入的一个对象 直接注入(推荐使用) 新建控制器 然后构造函数直接注入 [Route("api/[controller]" ...

  5. hdu5706-GirlCat

    Problem Description As a cute girl, Kotori likes playing ``Hide and Seek'' with cats particularly.Un ...

  6. Redis新接触

    一.redis简介 redis即Remote Dictionary Server,是一个key—value存储系统. 二.优点 1.redis支持的存储类型较多,如String.List.Hash.s ...

  7. eclipse导入新项目配置jdk、tomcat到浏览器正常访问

    好记性不如烂笔头,长时间不操作就会生疏,在此做个笔记 1.导入项目 2,进入选择项目,点finish完成,导入成功 3.配置tomcat和jdk 选择本地相对应jdk的jre 选择tomcat版本进行 ...

  8. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Saratov

    A. Three Arrays 枚举每个$a_i$,双指针出$b$和$c$的范围,对于$b$中每个预先双指针出$c$的范围,那么对于每个$b$,在对应$c$的区间加$1$,在$a$处区间求和即可. 树 ...

  9. <iframe>和<frame>区别

    1.frame不能脱离frameSet单独使用,iframe可以 2.frame不能放在body中,否则不能正常显示 frame不能和body同时使用 <!--<body>--> ...

  10. [LeetCode] To Lower Case 转为小写

    Implement function ToLowerCase() that has a string parameter str, and returns the same string in low ...