pandas(一)
import numpy as py
import pandas as pd
Series对象
data= pd.Series([0.25,0.5,0.75,1.0]) 默认索引是数字
data=pd.Series([0.25,0.5,0.75,1.0],index=['a','b','c','d']) 用字符串定义索引,也可以用不连续的索引
data['b']
data['a':'c'] 支持切片操作
pd.Series(data,index=index)
data可以是列表或numpy数组
pd.Series([2,4,6])
也可以是标量,创建时会重复填充到每个索引上
pd.Series([5,index=[100,200,300])
也可以是字典,index默认是字典的键
pd.Series({2:'a',3:'b'})
series的字典式映射方法
data=pd.Series([0.25,0.5,0.75,1.0],
index=['a','b','c','d'
)
判断data中是否有a索引
'a' in data
获取data索引
data.keys()
获取所有数据
list(data.items())
增加新索引
data['e']=10.25
切片:
显示索引做切片,包含最后一个值
data['a':'c']
隐式整数索引做切片,不包含年最后一个值
data[0:2]
掩码:
data[(data>0.3) & (data<0.7)]
花哨索引:
data[['a,'e']]
索引器:为了防止series为整数索引是,取值为显式索引,切片为隐式索引而混淆
loc:表示取值和切片都是显式
data=pd.Series(['a','b','c'],index=[1,3,5])
data.loc[1]
data.loc[1:3]
iloc:表示取值和切片都是隐式
data.iloc[1]
data.iloc[0:2]
DataFrame对象
通过字典列表创建
data=[{'a':i,'b':2*i} for i in range(3)]
x=pd.DataFrame(data)
通过series对象创建
pd.DataFrame({'data':data,'age':[1,2,3,4])
*注意此处data是前面series创建好的有索引的对象
通过numpy创建
pd.DataFrame(np.random.rand(3,2),
columns=['name','age'],
index=['a','b','c']
)
x.index获取行索引标签,x.columns获取列索引标签
pandas 的index对象
创建对象
ind=pd.Index([2,5,6,7,11])
切片,索引
ind[1],ind[::2]
inda=pd.Index([1,3,5,7,9])
indb=pd.Index([2,3,5,7,11])
交集
inda & indb
并集
inda | indb
异或
inda ^ indb
DataFrame数据选择方法
name = pd.Series({'a':'xi','b':'lin','c':'saber'})
age = pd.Series({'a':18,'b':20,'c':'18'})
data = pd.DataFrame({'name':name,'age':age})
data['name'] 等价于data.name,推荐前者
data.values 查看数组数据
data.values[0] 查看第一行数据
data.T 转置
loc,iloc与series对象中的用法相同
data.loc[:'lin',:'age']
data.iloc[:3,:2]
ix混合使用,不常用
data.ix[:3,:'age']
与掩码和花哨索引结合使用
data.loc[data.age>18,['name','age']]
更新数据
data[0,1]= 20
numpy通用函数pandas也适用
当用两个series对象创建dataframe对象时,会取两个对象的并集,没有的用nan代替
两个dataframe运算时也适用
也可以自定义缺失值
a=pd.DataFrame(np.random.randint(0,20,(2,2)),
columns=list('ab'))
b=pd.DataFrame(np.random.randint(0,10,(3,3)),
columns=list('bca'))
fill = a.stack().mean()
a.add(b,fill_value=fill) a的缺失值用fill填充
缺失值处理:
常用标签nan(not a number)
val = np.array([1,np.nan,3,4])
val.sum,max,min 会将nan的影响算进去
np.nansum(val) ,nanmax,nanmin 忽略nan的影响
data= pd.Series([1,np.nan,'hello',None])
发现缺失值:
data.isnull()
data[data.notnull()]
剔除缺失值:
data.dropna()
df = pd.DataFrame([[1,np.nan,2],
[2,3,5],
[np.nan,4,6]])
df.dropna() 删除含有缺失值的整行数据 ,axis=1或axis='columns' 删除整列数据
df[3] = np.nan
df.dropna(axis='columns',how='all) all表示删除全是缺失值的那行,any表示有缺失值就删除
df.dropna(axis='row',thresh=3) 表示最少含有3个非缺失值的行才会被保留
填充缺失值:
data=pd.Series([1,np.nan,2,None,3],index=list('avcde'))
data.fillna(0) 缺失值用0填充
data.fillna(method='ffill') 用缺失值前面的有效值填充,bfill用后面的有效值填充
data.fillna(method='ffill',axis=1) 每行的前面有效值填充
如果缺失值前面没有值,那么仍然是缺失值
pandas(一)的更多相关文章
- pandas基础-Python3
未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...
- 10 Minutes to pandas
摘要 一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型 十.画图 十一 ...
- 利用Python进行数据分析(15) pandas基础: 字符串操作
字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...
- 利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- pandas.DataFrame对行和列求和及添加新行和列
导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFra ...
- pandas.DataFrame排除特定行
使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列 ...
随机推荐
- 【python】flask+nginx配置
背景信息 有wordpress服务A 有flask服务B, gunicorn启动,8个进程 用nginx代理,实现访问A然后跳转到B 问题 flask服务B上有文件上传操作,用nginx后发现无法上传 ...
- js的逆向解析
过程: 知道如何寻找登录的接口 知道如何确定js的位置 知道如何观察js的执行过程 知道js的执行方法 1. 确定网站的登录的接口登录的form表单中action对应的url地址通过抓包可以发现,在这 ...
- 参数ref与out
通常我们向方法中传递的是值,方法获得的是这些值的一个拷贝,然后使用这些拷贝,当方法运行完毕后,这些拷贝将被丢弃,而原来的值不会受到影响. 这种情况是通常的,当然还有另外一种情况,我们向方法传递参数的形 ...
- eclipse查看一个方法被谁引用(调用)的快捷键四种方式
1.(首推)双击选中该方法,Ctrl+Alt+H 如果你想知道一个类的方法到底被那些其他的类调用,那么请选中这个方法名,然后按“Ctrl+Alt+H”, Eclipse就会显示出这个方法被哪些方法调用 ...
- .net core2.x - Identity - 简介
- logrotate命令
logrotate是个十分有用的工具,它可以自动对日志进行截断(或轮循).压缩以及删除旧的日志文件,例如,你可以设置logrotate,让/var/log/foo日志文件每30天轮循,并删除超过6个月 ...
- xml格式转成json格式,使用Python
import xml.etree.ElementTree root=xml.etree.ElementTree.parse('testXml.xml') book=root.findall('pers ...
- 理解WidowManager
--摘自<Android进阶解密> *WindowManger的关联类* 1.Window是一个抽象类,具体的实现类为PhoneWindow,它对View进行管理.WindowManage ...
- 基础知识-Mockjs进行数据模拟
目录 1. 目标 2. 创建模拟数据服务器 3. 安装 mockjs, 熟悉 mockjs 语法 4. 设置代理,解决 vue 项目跨域问题 5. 设置响应头,解决无法获取获取 token 和 coo ...
- C#堆和栈
一.在讲堆栈之前,我们先看看值类型和引用类型: 1,我们看看值类型与引用类型的存储方式: 引用类型:引用类型存储在堆中.类型实例化的时候,会在堆中开辟一部分空间存储类的实例.类对象的引用还是存储在栈中 ...