pandas(一)
import numpy as py
import pandas as pd
Series对象
data= pd.Series([0.25,0.5,0.75,1.0]) 默认索引是数字
data=pd.Series([0.25,0.5,0.75,1.0],index=['a','b','c','d']) 用字符串定义索引,也可以用不连续的索引
data['b']
data['a':'c'] 支持切片操作
pd.Series(data,index=index)
data可以是列表或numpy数组
pd.Series([2,4,6])
也可以是标量,创建时会重复填充到每个索引上
pd.Series([5,index=[100,200,300])
也可以是字典,index默认是字典的键
pd.Series({2:'a',3:'b'})
series的字典式映射方法
data=pd.Series([0.25,0.5,0.75,1.0],
index=['a','b','c','d'
)
判断data中是否有a索引
'a' in data
获取data索引
data.keys()
获取所有数据
list(data.items())
增加新索引
data['e']=10.25
切片:
显示索引做切片,包含最后一个值
data['a':'c']
隐式整数索引做切片,不包含年最后一个值
data[0:2]
掩码:
data[(data>0.3) & (data<0.7)]
花哨索引:
data[['a,'e']]
索引器:为了防止series为整数索引是,取值为显式索引,切片为隐式索引而混淆
loc:表示取值和切片都是显式
data=pd.Series(['a','b','c'],index=[1,3,5])
data.loc[1]
data.loc[1:3]
iloc:表示取值和切片都是隐式
data.iloc[1]
data.iloc[0:2]
DataFrame对象
通过字典列表创建
data=[{'a':i,'b':2*i} for i in range(3)]
x=pd.DataFrame(data)
通过series对象创建
pd.DataFrame({'data':data,'age':[1,2,3,4])
*注意此处data是前面series创建好的有索引的对象
通过numpy创建
pd.DataFrame(np.random.rand(3,2),
columns=['name','age'],
index=['a','b','c']
)
x.index获取行索引标签,x.columns获取列索引标签
pandas 的index对象
创建对象
ind=pd.Index([2,5,6,7,11])
切片,索引
ind[1],ind[::2]
inda=pd.Index([1,3,5,7,9])
indb=pd.Index([2,3,5,7,11])
交集
inda & indb
并集
inda | indb
异或
inda ^ indb
DataFrame数据选择方法
name = pd.Series({'a':'xi','b':'lin','c':'saber'})
age = pd.Series({'a':18,'b':20,'c':'18'})
data = pd.DataFrame({'name':name,'age':age})
data['name'] 等价于data.name,推荐前者
data.values 查看数组数据
data.values[0] 查看第一行数据
data.T 转置
loc,iloc与series对象中的用法相同
data.loc[:'lin',:'age']
data.iloc[:3,:2]
ix混合使用,不常用
data.ix[:3,:'age']
与掩码和花哨索引结合使用
data.loc[data.age>18,['name','age']]
更新数据
data[0,1]= 20
numpy通用函数pandas也适用
当用两个series对象创建dataframe对象时,会取两个对象的并集,没有的用nan代替
两个dataframe运算时也适用
也可以自定义缺失值
a=pd.DataFrame(np.random.randint(0,20,(2,2)),
columns=list('ab'))
b=pd.DataFrame(np.random.randint(0,10,(3,3)),
columns=list('bca'))
fill = a.stack().mean()
a.add(b,fill_value=fill) a的缺失值用fill填充
缺失值处理:
常用标签nan(not a number)
val = np.array([1,np.nan,3,4])
val.sum,max,min 会将nan的影响算进去
np.nansum(val) ,nanmax,nanmin 忽略nan的影响
data= pd.Series([1,np.nan,'hello',None])
发现缺失值:
data.isnull()
data[data.notnull()]
剔除缺失值:
data.dropna()
df = pd.DataFrame([[1,np.nan,2],
[2,3,5],
[np.nan,4,6]])
df.dropna() 删除含有缺失值的整行数据 ,axis=1或axis='columns' 删除整列数据
df[3] = np.nan
df.dropna(axis='columns',how='all) all表示删除全是缺失值的那行,any表示有缺失值就删除
df.dropna(axis='row',thresh=3) 表示最少含有3个非缺失值的行才会被保留
填充缺失值:
data=pd.Series([1,np.nan,2,None,3],index=list('avcde'))
data.fillna(0) 缺失值用0填充
data.fillna(method='ffill') 用缺失值前面的有效值填充,bfill用后面的有效值填充
data.fillna(method='ffill',axis=1) 每行的前面有效值填充
如果缺失值前面没有值,那么仍然是缺失值
pandas(一)的更多相关文章
- pandas基础-Python3
未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...
- 10 Minutes to pandas
摘要 一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型 十.画图 十一 ...
- 利用Python进行数据分析(15) pandas基础: 字符串操作
字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...
- 利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- pandas.DataFrame对行和列求和及添加新行和列
导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFra ...
- pandas.DataFrame排除特定行
使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列 ...
随机推荐
- 【原创】运维基础之Redis(1)简介、安装、使用
redis 5.0.3 官方:https://redis.io/ 一 简介 Redis is an open source (BSD licensed), in-memory data structu ...
- java设计模式自我总结---适配器模式
上一篇博客说完了 java 23 中设计模式中的五种 创建性模式,由于篇幅过长,新开一贴今天开始学习结构型模式, 结构型模式包括以下七种:适配器模式.装饰模式.代理模式.外观模式.桥接模式.组合模式. ...
- GRPC单向/双向流
开始食用grpc(之二)https://www.cnblogs.com/funnyzpc/p/9570992.html 开始食用grpc(之一)https://www.cnblogs.com/funn ...
- 不装插件,查看.rp文件
AxShare国内平台地址:http://share.axure.org临时急用可以使用公用帐户.用户名:axure@webppd.com,密码:webppd123 上传.rp文件,点击 url 地址 ...
- 一起学爬虫——PyQuery常用用法总结
什么是PyQuery PyQuery是一个类似于jQuery的解析网页工具,使用lxml操作xml和html文档,它的语法和jQuery很像.和XPATH,Beautiful Soup比起来,PyQu ...
- SQL反模式学习笔记15 分组
目标:查询得到每组的max(或者min等其他聚合函数)值,并且得到这个行的其他字段 反模式:引用非分组列 单值规则:跟在Select之后的选择列表中的每一列,对于每个分组来说都必须返回且仅返回一直值. ...
- CodeForces 623E Transforming Sequence 动态规划 倍增 多项式 FFT 组合数学
原文链接http://www.cnblogs.com/zhouzhendong/p/8848990.html 题目传送门 - CodeForces 623E 题意 给定$n,k$. 让你构造序列$a( ...
- java集合性能
https://www.cnblogs.com/xyhuangjinfu/p/5429644.html
- Android数据存储引擎---SQLite数据库
目标:是否可以在PC端桌面上使用SQLite数据库制作一个财务文件? 目录: 来源: 实践: 总结和比较: SQLite数据简介 是什么,内部结构是怎样的,数据库和表的关系是什么 有什么用 常用的操作 ...
- Android SQL数据库应用实践 “问题点”“疑难点”“解析”
应用 Android SQL 数据库时,遇到的问题: 场景1:Android SQL查询后,获取到Cursor并查询数据:遇到以下问题:"android.database.CursorInd ...